
Digital Image Processing

Image Enhancement in the Spatial 
Domain 

(Chapter 4)



The principal objective of enhancement is to 
process an images so that the result is more 
suitable than the original image for a SPECIFIC
application

Category of image enhancement
• Spatial domain
• Frequency domain

Objective



Pixel neighborhood

g(x,y) = T [ f(x,y) ]



Point Processing,
Gray-Level Transformation Function

s = T (r)

Contrast
stretching

Thresholding
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Mask Processing Filtering



Some Basic gray-Level  transformation for image Enhancement

Basic Gray Level Transformation



Image Negative

s = L - 1 - r



Log Transformations

s = c log(1+r)

Pixel values dynamic range=[0 - 1.5×106]



Power-Law Transformations

s = cr

s = r2.5

r = [1     10    20    30    40     210   220   230   240   250   255]

s( = 2.5) = [0      0     0      1       2      157   176   197   219   243   255]

s( =.4)    = [28    70   92   108   122   236   240   245   249   253   255]



Power-Law Transformations - Gamma Correction



Power-Law Transformations
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Power-Law Transformations
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•Advantage
–Arbitrarily complex

•Disadvantage
–More user input

•Type of Transformations
–Contrast stretching

–Gray-level slicing

–Bit-plane slicing

Piecewise-Linear Transformation Functions



Contrast Stretching

Objective: Increase the dynamic range of the gray levels

Causes for poor image
-Poor illumination
-Lack of dynamic range
in the imaging sensor
-Wrong lens aperture



Example 1
For image with intensity range [50 - 150]
What should (r1,s1) and (r2,s2) be to increase the 
dynamic range of the image to [0 - 255]?
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Contrast Stretching



Objective: Highlighting a specific range of gray levels in an 
image.

Gray-Level Slicing
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Bit-Plane Slicing



8-bit fractal image used for Bit-Plane Slicing



Bit-Plane Slicing



Histogram
The histogram of a digital 
image with gray levels in 
the range [0, L-1] is a discrete 
function 

h(rk) = nk, 
where rk is the kth gray level 
and nk is the number of 
pixels in the image having gray 
level rk.

Normalized Histogram
Dividing each value of the histogram by the total number 
of pixels in the image, denoted by n. 

p(rk) = nk /n.
Normalized histogram provide useful image statistics.

Histogram Processing



function Normalized_Hist = Img_Hist(img)

[R,C]=size(img);

Hist=zeros(256,1);

for r = 1:R

for c=1:C

Hist(img(r,c)+1,1)=Hist(img(r,c)+1,1)+1;

end

end

Normalized_Hist = Hist/(R*C);

plot(Normalized_Hist)

Histogram Extraction using Matlab



Histogram Processing



Histogram equalization is used to enhance image contrast 
and gray-level detail by spreading the histogram of the 
original image.

s = T ( r )     0 r  1, 
where r and s are normalized pixel intensities

Conditions for the transformation
(a) T( r ) is single-valued and monotonically increasing in the

interval 0  r  1
(b) 0  T ( r )  1 for 0  r  1

1

Histogram Equalization



Objective of histogram equalization
Transform the histogram function of the original 
image pr(r) to a uniform histogram function.

ps(s) = 1 0 s  1

Equalizer

Transformation
pr(r) ps(s)
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Histogram Equalization
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Histogram Equalization



255

Histogram Equalization



Is histogram equalization a good approach to 
enhance the image?

Histogram Matching
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Histogram Matching method generates a processed 
image that has a specified histogram.

Input image

pr(r)

T (r)


r

r dttp

0

)( s

Desired

Output image

pz(z)

G (z)


z

z dttp

0

)( v

s  v, since both will have 

approximately uniform pdf

z = G-1[T( s )] s = G[T( r )]

Histogram Matching



Histogram Matching



1) Modify the histogram of
the image to obtain pz(z).

2) Find transformation 
function G (z) using the
modified histogram in
step 1.

3) Find the inverse G-1 (z)

4) ApplyG-1 to the pixels of 
the histogram-equalized 
image.

G (z)

G-1 (z)

Histogram Matching
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Local Histogram Enhancement



Contrast manipulation using local statistics, such as the mean and 
variance, is useful for images where part of the image is acceptable,
but other parts may contain hidden features of interest.

Histogram Statistics for Image Enhanc.



Let (x,y) be the coordinates of a pixel in an image, and let Sxy

denote a neighborhood (sub-image) of specified size, centered at
(x,y).
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The local mean and variance are the decision factors to whether apply
local enhancement or not.

Histogram Statistics for Image Enhanc.
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MG: Global mean
DG: Global standard deviation
E, k0, k1, k2: Specified parameters

E = 4, 

k0 = 0.4, 

k1= 0.02, 

k2 = 0.4

Size of local area = 3  3

Histogram Statistics for Image Enhanc.
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Histogram Statistics for Image Enhanc.



Enhanced ImageOriginal Image

Histogram Statistics for Image Enhanc.



Arithmetic/logic operations involving images are performed 
on a pixel-by-pixel basis between two or more images.

Arithmetic Operations
Addition, Subtraction, Multiplication, and Division

Logic Operations
AND, OR, NOT

Enhancement Using Arithmetic/Logic Op.



AND

OR

Logic operations are performed on the binary representation 
of the pixel intensities

Enhancement Using AND and OR Logic Op.



Enhancement Using Arithmetic Op. _ SUB

Original
4

Upper-order

Bit

Error
HE of

Error



Problem:
The pixel intensities in the difference image can range from -255 to 255.
Solutions:
1) Add 255 to every pixel and then divide by 2.
2) Add the minimum value of the pixel intensity in the difference image

to every pixel and then divide by 255/Max. Max is the maximum
pixel value in the modified difference image.

Enhancement Using Arithmetic Op. _ SUB
Mask Mode Radiography
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Enhancement Using Arithmetic Op.  
Averaging



Gaussian Noise

mean = 0

variance = 64

K = 8

K = 32

K = 16

K = 128

f(x,y) g(x,y)
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x

Enhancement Using Arithmetic Op.  
Averaging



Difference 
images between 
original image 
and images 
obtained from 
averaging. 

K = 8

K = 16

K = 32

K = 128

Notice the 
mean and 
variance
of the 
difference 
images
decrease as K
increases. 

Enhancement Using Arithmetic Op.  
Averaging



Spatial filtering are 
filtering operations 
performed on the pixel 
intensities of an image 
and not on the frequency 
components of the image. 
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a = (m - 1) / 2          b = (n - 1) / 2

Basics of Spatial Filtering - Linear



Response, R, of an m  n mask at any point (x, y)
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Special consideration is given when the center of the filter
approach the boarder of the image.

Basics of Spatial Filtering 



Nonlinear spatial filters operate on neighborhoods, and the 
mechanics of sliding a mask past an image are the same as was 
just outlined. In general however, the filtering operation is based 
conditionally on the values of the pixel in the neighborhood under 
consideration, and they do not explicitly use coefficients in the 
sum-of products manner described previously.

Example
Computation for the median is a nonlinear operation.

Nonlinear of Spatial Filtering 



Smoothing filters are used
- Noise reduction
- Smoothing of false contours
- Reduction of irrelevant detail

Undesirable side effect of smoothing filters
- Blur edges  

Weighted

average

Box

filter

Weighted average filter
reduces blurring in the 

smoothing process.

Smoothing Spatial Filtering - Linear
Averaging (low-pass) Filters



n = filter size

n = 3

n = 5 n = 9

n = 15

n = 35

Smoothing Spatial Filtering _ Linear
Averaging (low-pass) Filters



filter size

n = 15

Thrsh = 25% of 

highest intensity

Smoothing Spatial Filtering
Averaging & Threshold



Order-statistics filters are nonlinear spatial filters whose 
response is based on ordering (ranking) the pixels 
contained in the image area encompassed by the filter, 
and then replacing the value of the center pixel with the 
value determined by the ranking result.

3  3 Median filter   [10 125 125 135 141 141 144 230 240] = 141

3  3 Max filter        [10 125 125 135 141 141 144 230 240] = 240

3  3 Min filter         [10 125 125 135 141 141 144 230 240] = 10

Median filter eliminates isolated clusters of pixels that are 
light or dark with respect to their neighbors, and whose 
area is less than n2/2.

Smoothing Spatial Filtering
Order Statistic Filters



n = 3

Average

filter

n = 3

Median

filter

Order Statistic Filters



The principal objective of sharpening is to highlight 
fine detail in an image or to enhance detail that 
has been blurred.
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The derivatives of a digital function are defined in terms of 
differences.

Sharpening Spatial Filters



Requirements for digital derivative
First derivative

1) Must be zero in flat segment
2) Must be nonzero along ramps.
3) Must be nonzero at the onset of a gray-level step or ramp

Second derivative
1) Must be zero in flat segment
2) Must be zero along ramps. 
3) Must be nonzero at the onset and end of a gray-level step 

or ramp 
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Sharpening Spatial Filters



Sharpening Spatial Filters



Comparing the response between first- and second-ordered 
derivatives:
1) First-order derivative produce thicker edge
2) Second-order derivative have a stronger response to fine 
detail, such as thin lines and isolated points.
3) First-order derivatives generally have a stronger response 
to a gray-level step {2 4 15}
4) Second-order derivatives produce a double response at 
step changes in gray level.

In general the second derivative is better than the first derivative for  
image enhancement.  The principle use of first derivative is for edge 
extraction.

Sharpening Spatial Filters



First derivatives in image processing are implemented 
using the magnitude of the gradient.
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Roberts operator

Gx = (z9-z5)   and   Gy = (z8 - z6)
Sobel operator

Gx = (z7+2z8+z9) - (z1+2z2+z3) and   

Gy = (z3+2z6 +z9) - (z1+2z4+z7) 

Use of First Derivative for Edge Extraction 
Gradient



Sobel operators

Robert operator

Use of First Derivative for Edge Extraction 
Gradient



f(x,y) = [40, 140]
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Use of First Derivative for Edge Extraction 
Gradient



Use of First Derivative for Edge Extraction 
Gradient



2

2

2

2
2

y

f

x

f
f











)],(4)1,()1,(),1(),1([

),(2)1,()1,(

),(2),1(),1(

2

2

2

2

2

yyfyxfyxfyxfyxff

yxfyxfyxf
y

f

yxfyxfyxf
x

f













2nd Derivative  _ Laplacian
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Isotropic filter response is independent of the 
direction of the discontinuities in the image to which 
the filter is applied.

Use of 2nd Derivative for Enhancement
Laplacian



f(x,y) = [90, 100]
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Use of 2nd Derivative for Enhancement
Laplacian
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g(x,y) = f(x,y) -
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Use of 2nd Derivative for Enhancement
Laplacian



High-boost filtering is used when the original image is
blurred and dark.
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Un-sharp Masking and High-boost Filtering



(b)

Un-sharp Masking and High-boost Filtering



Combining Spatial 
Enhancement Methods



Combining Spatial 
Enhancement Methods


