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Digital IJmage Processing

Image Enhancement in the Spatial
Domain

(Chapter 4)



Objective

The principal objective of enhancement is to
process an images so that the result is more

suitable than the original image for a SPECIFIC
application

Category of image enhancement
e Spatial domain
e Frequency domain
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Point Processing,
Gray-Level Transformation Function
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Mask Processing Filtering

g(x.y) =T[T(xy)]
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Basic Gray Level Transformation
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Some Basic gray-Level transformation for image Enhancement



Image Negative

s=L-1-r

ab

FIGURE 3.4

(a) Original
digital
mammogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)



Log Transformations

s =c log(1+r)

ab

FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applving the log
transformation
given in

Eq. (3.2-2) with
c=1.

Pixel values dynamic range=[0 - 1.5x10°]



Power-Law Transformations

L-1 FIGURE 3.6 Plots
of the equation
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cases).
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Power-Law Transformations - Gamma Correction

Image as viewed on monitor

ab
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FIGURE 3.7

(a) Linear-wedge
gray-scale image.
(b) Response of
monitor to linear
wedge.

(¢) Gamma-
corrected wedge.
(d) Output of
monitor.

Y

Gamma
correction

S

Image as viewed on monitor




y=04

Power-Law Transformations
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FIGURE 3.8

(a) Magnetic
resonance (MR)
image of a
fractured human
spine.

(b)—(d) Results of
applying the
transformatio

).3, respectively.
(Original image
for this example
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences.
Vanderbilt
University
Medical Center.)




Power-Law Transformations
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FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 3.0,4.0,and
5.0, respectivelv.
(Original image
for this example
courtesy of

NASA.)




Piecewise-Linear Transformation Functions

Advantage e
Arbitrarily complex —
Disadvantage e
More user input —

Type of Transformations e
Contrast stretching —
Gray-level slicing —
Bit-plane slicing —



Contrast Stretching

Objective: Increase the dynamic range of the gray levels

ab
c d

FIGURE 3.10
Contrast
stretching.

(a) Form of
transformation
function. (b} A
low-contrast
image. (¢) Result
of contrast
stretching.

(d) Result of
thresholding.
{Original image
courtesy of

Dr. Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)

Causes for poor image
-Poor illumination

-Lack of dynamic range
in the imaging sensor
-Wrong lens aperture

(ra. 52}
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Contrast Stretching

Example 1

For image with intensity range [50 - 150]

What should (r,,s,) and (r,,s,) be to increase the
dynamic range of the image to [0 - 255]?




Gray-Level Slicing

Objective: Highlighting a specific range of gray levels in an

image.

L—1

ab

it

FIGURE 3.11

(a) This
transformation
highlights range
| A, B] of gray
levels and reduces
all others to a
constant level.
(b) This
transformation
highlights range
| A, B] but
preserves all
other levels.

(¢) An image.
(d) Result of
using the
transformation
in (a).



Bit-Plane Slicing
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8-bit fractal image used for Bit-Plane Slicing




FIGURE 3.14 The eight bit planes of the image in Fig. 3.13. The number at the bottom,
right of each image identifies the bit plane.



Histogram Processing

Histogram
The histogram of a digital

image with gray levels in
the range [0, L-1] is a discrete
function

mr) = ny
where r, is the Ath gray level
and n, is the number of
pixels in the image having gray

Low-contrast image

level r,.

Normalized Histogram
Dividing each value of the histogram by the total number
of pixels in the image, denoted by .

Ard) = ng[n.

Normalized histogram provide useful image statistics.



Histogram Extraction using Matlab

function Normalized Hist = Img_Hist(img)

[R,C]=size(img);

Hist=zeros(256,1);

forr=1:R
for c=1.C

Hist(img(r,c)+1,1)=Hist(img(r,c)+1,1)+1;

end

end

Normalized_Hist = Hist/(R*C);

plot(Normalized Hist)



Histogram Processing

Dark image

|.||||.|§|....

Bright image

a b

FIGURE 3.15 Tourbasic image types: dark, light. low contrast, high contrast. and their cor-
responding hislograms, [{}nnlnﬂl imagg Lnurlnay of Dr. H[]ncrIImm Research School
of Binlogjcal Sciences, Australian National University, Canberra, .'"LI.IHlT=1|I'I

Low-contrast image

3

High-vontrast image




Histogram Equalization

Histogram equalization is used to enhance image contrast
and gray-level detail by spreading the histogram of the
original image.

s=T7(r) 0<r<i,
where r and s are normalized pixel intensities

Conditions for the transformation

(a) I r) is single-valued and monotonically increasing in the
interval0<r<1

(b)O<T(r)<ifor0<r<1

5 FIGURE 3.16 A

4 eray-level
transformation
function that is
both single valued
and
monotonically
increasing.

]

s = T(ry) e
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0 .



Histogram Equalization

Objective of histogram equalization
Transform the histogram function of the original
image p/(r) to a uniform histogram function.

pLs) =1

0<s<1

p(r) —>

Equalizer
Transformation

— ps(s)

Continuous case

s=T(r) =j p, (W)dw
0

Discrete case

K
Sc =T (1) =2 P (r})
j=0
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Dark image

mm..... .

Bright image

Low-contrast image

High-contrast image

Histogram Equalization

gbe

FIGURE 3.17 {a) Images from Fig. 3.15. (b) Results of histogram equalization. {¢) Cor-
Tesponding histograms




FIGURE 3.18
Transformation
functions (1)
through (4) were
obtained from the
histograms of the
images in
Fig.3.17(a), using
Eq. (3.3-8).

Histogram Equalization
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Histogram Matching

Is histogram equalization a good approach to
enhance the image?

Number of pixels { X 10%)

L l I 1
0 64 128 192 255
Gray level

sl

FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA's Mars Global
Surveyor. (b) Histogram. (Original image courtesy of NASA.)



Output gray levels

Number of pixels ( X 10%)

Histogram Equalization

255 I i ab
C

192 7/ FIGURE 3.21
(a) Transtormation
function for

1281 histogram
equalization.

6l (b) Histogram-
equalized image
(note the washed-
0 | | | out appearance).
i 64 128 192 {c) Histogram
Input gray levels of (b).
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Histogram Matching

Histogram Matching method generates a processed
image that has a specified histogram.

G (2)
Desired Z
Output image — _f p, (t)dt
p,(2) =
T(r)
Input image (
., t)dt
o (1) g p. (t)
z=GT(s)]

—>V

s =V, since both will have
approximately uniform pdf

s=G[T(r)]



a b

C
FIGURE 3.19
(a) Graphical
interpretation of
mapping from r,
to s via T°(r).
(b) Mapping of z,
o118
corresponding
value v, via G(z2).
(¢) Inverse
mapping from s,
Lo its
corresponding
value of z,.

Histogram Matching
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Histogram Matching

7.00

b
d
FIGURE 3.22

1) Modify the histogram of (@ Speitied

histogram.
i i (b) Curve (1) is
the Image to Obtaln pZ(Z)' from Eq. (3.3-14),
using the
histogram in (a);
curve (2) was

2) Flnd tranSfOrmatlon obtained using 0 64 128 192

the iterative Gray level

funCtIOn G(Z) US|ng the procedure in

Eq. (3.3-17).

modified histogram in (¢) Enhanced
image using
mappings from
Step 1 . curve (2).
{d) Histogram
of (¢).

Number of pixels { % 10*)

Output gray levels

3) Find the inverse G! (2)

] 64 128 192 255

4) Apply G to the pixels of foputgry level

the histogram-equalized £ | |
. ; 5251 _|
image. :
2 3501 i
E.E 1.75 1 _
0 | Ll |
0 04 128 192 2355

Gray level



Local Histogram Enhancement

Global Histogram
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Local Histogram Enhancement
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FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (¢) Result of local histogram
equalization using a 7 X 7 neighborhood about each pixel.



Histogram Statistics for Image Enhanc.

Contrast manipulation using local statistics, such as the mean and
variance, is useful for images where part of the image is acceptable,
but other parts may contain hidden features of interest.

FIGURE 3.24 SEM
image of a
tungsten filament
and support.
magnified
approximately
1303 (Original
image courtesy of
Mr. Michael
Shaffer,
Department of
Geological
Sciences,
University of
Oregon, Eugene).




Histogram Statistics for Image Enhanc.

Let (x, )) be the coordinates of a pixel in an image, and let S,,
denote a neighborhood (sub-image) of specified size, centered at

(X))
Z 5.t P(Fs

(S,£)eSyy

Z[rs, mS ] p( t)

(S,t)eSyy

The local mean and variance are the decision factors to whether apply
local enhancement or not.



Histogram Statistics for Image Enhanc.

Mg: Global mean
D.: Global standard deviation
E, ko, Ky, k,: Specified parameters

sy < [EFOW) i me <kgMg AND kiDg <o <k;Ds
| f(x,y)  otherwise
E=4,
ko= 0.4,
k,= 0.02,
k, = 0.4

Size of local area =3 x 3



Histogram Statistics for Image Enhanc.

s i /’I(X’y) _ G(X,Y) E

FIGURE 3.25 (a) Image formed from all local means obtained from Fig. 3.24 using Eq. (3.3-21). (b) Image
formed from all local standard deviations obtained from Fig. 3.24 using Eq. (3.3-22). (¢) Image formed from
all multiplication constants used to produce the enhanced image shown in Fig. 3.26.

Image Mean

125 |135 145 135|.. 174 164
168 |175 158 149 .. 187

210 231 215 129
187 192 145|200




Histogram Statistics for Image Enhanc.

Original Image Enhanced Image



Enhancement Using Arithmetic/Logic Op.

Arithmetic/logic operations involving images are performed
on a pixel-by-pixel basis between two or more images.

Arithmetic Operations
Addition, Subtraction, Multiplication, and Division

Logic Operations
AND, OR, NOT



Enhancement Using AND and OR Logic Op.

abc
de f

FIGURE 3.27

(a) Original
image. (b) AND
image mask.

(¢) Result of the
AND operation
on images (a) and
(b). (d) Original
image. (e¢) OR
image mask.

() Result of
operation OR on
images (d) and
(e).

4
A

Logic operations' are performed on the binary representation
of the pixel intensities




Enhancement Using Arithmetic Op. _ SUB

Original

ab

¢ d

FIGURE 3.28

(a) Original
fractal image.

{b) Result of
setting the four
lower-order bit
planes to zero.
{c) Difference
between (a) and
(b).

{d) Histogram-
equalized
difference image.
{Original image
courtesy of Ms.
Melissa D. Binde.,
Swarthmore
College,
Swarthmore, PA).

4
Upper-order
Bit

HE of

Error Error




Enhancement Using Arithmetic Op. _ SUB
Mask Mode Radiography

] ‘, ;f_
i ! - [} f o .

ab

FIGURE 3.29
Enhancement by
image subtraction.
(a) Mask image.
(b) An image
(taken after
injection of a
contrast medium
into the
bloodstream) with
mask subtracted
out.

Problem:

The pixel intensities in the difference image can range from -255 to 255.

Solutions:

1) Add 255 to every pixel and then divide by 2.

2) Add the minimum value of the pixel intensity in the difference image
to every pixel and then divide by 255/Max. Max is the maximum
pixel value in the modified difference image.



Enhancement Using Arithmetic Op.
Averaging
Original image Noise with zero mean

N/

g(x,y)=T(x,y)+n(x,y)
G0 Y) =3 6,( Y

E[g(x, y)]=f(xY)
2 1 2

qmwzgmmw

O



Enhancement Using Arithmetic Op.
Averaging

Gaussian Noise
g(x,y) mean =0
variance = 64

K=128

ab
cd
= |

FIGURE 3.30 {a) Image of Galaxy Pair NGC 3314. (b} Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)—(f) Results of av-
eraging K = 8,16, 64, and 128 noisy images. (Original image courtesy of NASA.)




Enhancement Using Arithmetic Op.
Averaging

ab

FIGURE 3.31

(a) From top to
bottom:
Difference images

Fig.3.30(a) and
the four images in
4 Figs 3.30(c)
through (f).
...||||H ||I . respectively.
T T I (b) Corresponding
histograms.

Difference
images between
original image
and images
obtained from <
averaging.

e
[

16

: :..||HHIHH||.:

Notice the
| mean and

32 : l | variance
_ .|‘ ‘\. .

- of the
difference

1 images

: | decrease as K

K=128
| Increases.




Basics of Spatial Filtering - Linear

Spatial filtering are
filtering operations
performed on the pixel
intensities of an image
and not on the frequency
components of the image.

a b
g(x,y)= D D W(s,t) f(x+s,y+t)

s=—at=-Db

a=(Mm-1)/2  b=(n-1)/2




Basics of Spatial Filtering

Response, R, of an m x n mask at any point (x, y)

mn w, W, Wy
- wy Ws W,
1=1

W Wy Wy

Special consideration is given when the center of the filter
approach the boarder of the image.



Nonlinear of Spatial Filtering

Nonlinear spatial filters operate on neighborhoods, and the
mechanics of sliding a mask past an image are the same as was
just outlined. In general however, the filtering operation is based
conditionally on the values of the pixel in the neighborhood under
consideration, and they do not explicitly use coefficients in the
sum-of products manner described previously.

Example
Computation for the median is a nonlinear operation.



Smoothing Spatial Filtering - Linear
Averaging (low-pass) Filters

Smoothing filters are used
- Noise reduction
- Smoothing of false contours
- Reduction of irrelevant detail

Undesirable side effect of smoothing filters
- Blur edges

1 1 1 1 1
Weighted average filter T T LT
reduces blurring in the ’ 16
smoothing process. Lol ] R

Box Weighted

ab

FIGURE 3.34 Two
3 X 3 smoothing
(averaging) filter
masks. The
constant multipli
erin front of each
mask is equal to
the sum of the
values of its
coefficients, as is
required to
compute an
average.



Smoothing Spatial Filtering _ Linear
Averaging (low-pass) Filters
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n = filter size

=35

FIGURE 3.35 (a) Original image, of size 500 > 500 pixels. (b)—(f} Results of smoothing
with square averaging filter masks of sizes n = 3.5.9,15, and 35, respectively. The black
squares at the top are of sizes 3, 5,9, 15,25, 35, 45, and 55 pixels, respectively; their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart: their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50 = 120 pixels.



Smoothing Spatial Filtering
Averaging & Threshold

filter size Thrsh = 25% of
n=15 highest intensity

abec

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(¢) Result of thresholding (b). (Original image courtesy of NASA.)



Smoothing Spatial Filtering
Order Statistic Filters

Order-statistics filters are nonlinear spatial filters whose
response is based on ordering (ranking) the pixels
contained in the image area encompassed by the filter,

and then replacing the value of the center pixel with the

value determined

3 x 3 Median filter
3 x 3 Max filter
3 x 3 Min filter

by the ranking result.

10 125 125 135 141 141 144 230 240
10 125 125 135 141 141 144 230 240

10 125 125 135 141 141 144 230 240]

=141
=240
=10

Median filter eliminates isolated clusters of pixels that are
light or dark with respect to their neighbors, and whose
area is less than r#/2.



Order Statistic Filters

n=3 n=3
Average Median
filte filter

SR

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 X 3averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi. Inc.)



Sharpening Spatial Filters

The principal objective of sharpening is to highlight
fine detail in an image or to enhance detail that
has been blurred.

19
92"
1 ¢9
gk ?

The derivatives of a digital function are defined in terms of
differences.

Image ———» — Blurred Image




Sharpening Spatial Filters

Requirements for digital derivative

First derivative
1) Must be zero in flat segment
2) Must be nonzero along ramps.
3) Must be nonzero at the onset of a gray-level step or ramp

Second derivative
1) Must be zero in flat segment
2) Must be zero along ramps.
3) Must be nonzero at the onset and end of a gray-level step

or ramp
ﬂ: f(x+1)— f(x)
OX

Of D)+ F(x-D—2f ()
OX>



Sharpening Spatial Filters

C
FIGURE 3.38
(a) A simple
image. (b) 1-D
horizontal gray-
level profile along
the center of the
image and
including the
isolated noise
point.
{c) Simplified
profile (the points
are joined by
dashed lines to
simplify
interpretation).
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Sharpening Spatial Filters

Comparing the response between first- and second-ordered
derivatives:

1) First-order derivative produce thicker edge

2) Second-order derivative have a stronger response to fine
detail, such as thin lines and isolated points.

3) First-order derivatives generally have a stronger response
to a gray-level step {2 4 15}

4) Second-order derivatives produce a double response at
step changes in gray level.

In general the second derivative is better than the first derivative for
image enhancement. The principle use of first derivative is for edge
extraction.



Use of First Derivative for Edge Extraction

Gradient

First derivatives in image processing are implemented
using the magnitude of the gradient.

sz{a a}
oX oYy

ox
Roberts operator

Vi =mag(Vf) = (af

G, =(2925) and Gy = (25 - Z¢)

Sobel operator

)

of

oy

:

0.5

ng+pﬂ

G, = (z,+224+2y) - (24+22,+2;) and
G, = (25+224+2) - (24+22,+27)




Use of First Derivative for Edge Extraction
Gradient

a
b ¢

e vl Fd
d E: 4 o2 “3

FIGURE 3.44 Robert Operator

A3 X 3 region of ) ) )

an image (the z's “4 i3 3 /
are gray-level P

values) and masks /
used to compute 7 / 2
the gradient at K

point labeled zs. Y

All masks

coefficients sum -1 0 0 -1

Lo zero, as

expected of a

derivative

operator. v 1 ! 0
-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

Sobel operators




Use of First Derivative for Edge Extraction

Gradient

f(x,y) = [40, 140]

SO O O O O

o1} -1 -2|-1

0(2(]0]0 10

0|1/ 1|2]|1

0 O 0O 0 O
200 400 400 400 400

400 600 400 400 400 ......

400 400 0 O O
400 400 0 O O
400 400 0 O O

..00 0 0 O
... 0 100 200 200 200
...02000 O O
..02000 0 O



Use of First Derivative for Edge Extraction

Gradient

W

-

a b

FIGURE 3.45
Optical image of
contact lens (note
defects on the
boundary at 4 and
> o'clock).

(b) Sobel
eradient.
(Original image
courtesy of

Mr. Pete Sites,
Perceptics
Corporation.)



29 Derivative _ Laplacian

2 2
sz ﬂ_l_% O ® O
8)( ay @ @ O
o° f
—7 = fO L)+ T (x-1y)-2f (x,y)
o f
?:f(x,y+1)+f(x,y—l)—Zf(X,Y)

VEF =[f(x+Ly)+ f(x=Ly)+ F (X, y+D)+ f(x,y=1)—4f(y,y)]

(@} ® o) @ @



Use of 27 Derivative for Enhancement

Laplacian

Isotropic filter response is independent of the

direction of the discontinuities in the image to which

the filter is applied.

0 1 0 1 1 1
1 —4 1 1 -5 1
2f ot ||
oxt oyt ool
1 4 | -1 8 -
0 -1 0 -1 -1 -1

ab

c d

FIGURE 3.39

(a) Filter mask
used to
implement the
digital Laplacian,
as defined in

Eq. (3.7-4).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal
neighbors. (¢) and
(d) Twao other
implementations
of the Laplacian.



Use of 279 Derivative for Enhancement
Laplacian

0110
f(x,y) =90, 100] 4
0l1]0
=t 0 0 0
.0 10 0
.10 -40 10
.0 10 0

.0 0 O

O O o O o



Use of 279 Derivative for Enhancement
Laplacian

ab
cd
FIGURE 3.40

(a) Image of the
1 1 1 North Pole of the
moon.
(b) Laplacian-

1 - 8 1 filtered image.
(c¢) Laplacian

image scaled for

display purposes.
1 1 1 (d) Image
enhanced by
using Eq. (3.7-5).
(Original image
courtesy of
NASA.)

If the center coefficient
of the laplacian mask is
negative

£ (X, y) - V2 (x,Y)

TN ) V2 (0 )




Use of 279 Derivative for Enhancement
Laplacian

Vi =[f(x+1Ly)+ f(x=Ly)+ f(x,y+1)+ f(x,y—-1)—4f(

X, ¥)]

g(X,Y) — f(X’y) -1 1 411

o a

FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning
electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b),
respectively. Note how much sharper (e) is than (d). (Original image courtesy of Mr. Michael
Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)



Un-sharp Masking and High-boost Filtering

High-boost filtering is used when the original image is
blurred and dark.

fip = Af (%, ¥) =V f (X, y) Azl

ab

0 -1 0 -1 -1 -1 FIGURE 3.42 The
high-boost filtering
technique can be
implemented with
either one of these
masks, with A = 1.

-1 A+ 4 -1 -1 A+ 8 —1




Un-sharp Maskmg and High-boost Filtering
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FIGURE 3.43
{a) Same as
Fig. 3.41(c), but

(b)\d arker.
{a) Laplacian of

(a) computed with
the mask in

Fig. 3.42(b) using
A= 1.

(¢) Laplacian
enhanced image
using the mask in
Fig. 3.42(b) with
A = 1.(d)Same
as (c), but using
A=17.




Combining Spatial
Enhancement Methods

ez
cd

FIGURE 3.46

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a). (¢) Sharpened
image obtained
by adding (a) and
(b). (d) Sobel of
(a).




Combining Spatial
Enhancement Methods

|

2 h

FIGURE 3.46
(Continued )

(e) Sobel image
smoothed with a
5 X 5 averaging
filter. (f) Mask
image formed by
the product of (c)
and ().

(2) Sharpened
image obtained
by the sum of (a)
and (). (h) Final
result obtained by
applying a
power-law
transformation to
(). Compare (g)
and (h) with (a).
(Original image
courtesy of G.E.
Medical Systems.)




