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Digital Image Processing

Jmage Enhancement in the
Freqguency Domain
(Chapter 5)
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Fourier Series

N

WWAWVVAAWUAY

Any function that periodically WW\NW\M
repeats itself can be expressed
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as the sum of sines and/or
cosines of different
frequencies, each multiplied
by a different coefficients.
This sum is called a Fourier
series.

FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier's idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.



Fourier Series
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Fourier Transform

N

L/

A function that is not periodic but the area under
its curve is finite can be expressed as the integral
of sines and/or cosines multiplied by a weighing
function. The formulation in this case is Fourier
transform.




Continuous One-Dimensional Fourier
[ransform and Its Inverse

N

F(u) = ]2 f (X)e "™ dx

o Where ] = \/—_1
f(x) = j F (u)e’?™du

 (u) is the frequency variable.

« F(u) is composed of an infinite sum of sine
and cosine terms and. ..

o Each value of u determines the frequency of
its corresponding sine-cosine pair.




Continuous One-Dimensional Fourier Transform
and Its Inverse
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Example
Find the Fourier transform of a gate function II(t)
defined by

1
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Discrete One-Dimensional Fourier Transform
and Its Inverse

N
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e A continuous function f(x) is discretized into a
sequence:

{f(X,), (X, +AXx), f(X,+2AX%),..., (X, +[N —-1]Ax)}

by taking N or M samples Ax units apart.

i (x)

) o+ (N 1)Ax]




Discrete One-Dimensional Fourier Transform
and Its Inverse

N

e Where x assumes the discrete values
(0,1,2,3,...,M-1) then

f(x)= T (X, +XAX)

« The sequence {f(0),f(1),f(2),..f(M-1)} denotes any
M uniformly spaced samples from a corresponding
continuous function.




Discrete One-Dimensional Fourier Transform
and Its Inverse

I\/|x=0

1 ML ) X . . X |
F(u)=— f(x) cos2zu—— |SIN 27U —
(u) MXZ:(; ()_ vl M

szix

f(X) = MiF(u)e v
u=0

x=[0,1,2, ..., M-1]



Discrete One-Dimensional Fourier Transform
and Its Inverse

N

e Thevaluesu =0, 1, 2, ..., M-1 correspond to
samples of the continuous transform at
values 0, Au, 2Au, ..., (M-1)Au.

l.e. F(u)represents F(uAu), where:

AuzL
MAx




Discrete One-Dimensional Fourier Transform
and Its Inverse

N

The Fourier transform of a real function is
generally complex and we use polar
coordinates:

F(u) =R(u)+ jI(u)
F (u) _ ‘ m (u)‘em(u)
F(u) =[R*(u)+ 17 (u)1"

)
|R(U)_

Its phase angle ¢(u) =tan™




Discrete One-Dimensional Fourier Transform
and Its Inverse

N

e The square of the spectrum

P(u) =|F(u)|” = R*(u)+12(u)

is referred to as the Power Spectrum of f(x)
(spectral density).




Discrete 2-Dimensional Fourier Transform
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 Fourier spectrum: |F(u,v)\=[R2(U,V)+|2(U,V)]U2

1(u,V) |
R(u,v)

. Phase: #(u,v) =tan™

- Power spectrum:  P(u,v) =|F(u,v)| = R3(u,v)+1%(u,v)




Discrete One-Dimensional Fourier Transform
and Its Inverse

N

f(x) f(x) = f(xqg + xAx)
? f(xo + 34x)
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Time and Frequency Resolution and
Sampling

N

Frax = 100 Hz

What is the sampling rate (Nyquist)?

What is the time resolution?

What is the frequency resolution?

What if we take samples for two seconds with the Nyquist

sampling rate?
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Discrete Two-Dimensional Fourier Transform

and Its Inverse

1 M 1N - —j27z(ux+vy)
F(u,v)——ZZ (xy)e M N

MN &=

M —IN -1 u..v

127 (—X+—Y)

f(x,y)=> > Fuve M N

u=0 v=0

F(u,v)|= [Rz(u,v)+ | 2(u,v)]l/2

Fourier Spectrum




Discrete Two-Dimensional Fourier Transform and
Its Inverse

N

FO0) =2 > > F(x)
x=0 y=0

F(0,0) is the average intensity of an image




Discrete Two-Dimensional Fourier Transform and
Its Inverse

ab

FIGURE 4.3

(a) Image of a
20 x 40 white
rectangle on a
black background
of size 512 X 512
pixels

(b) Centered
Fourier spectrum
shown after
application

of the log
transformation
given in

Eq. (3.2-2).
Compare with

Fig. 4.2.

Use Matlab to generate the above figures



Freguency Shifting Property of the Fourier
Transform

| f

g(t) < G(w)

then

g(t)e’™ <> G(w—,)

(oi Voy)

f(X, y)e Vo> F(U-u,,v-V,)



Freguency Shifting Property of the Fourier
Transform
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FIGURE 4.34 Ty Y 4
(a) Fourier NV L Vo Py o S Voo N Vs WS Ny S Ve o S
spectrum showing  -M2 0 Mz e, 0 M2 M-1
back-to-back +———One pericd ——+f ' I+ ———One period ———

halfl periods in

the interval

|0, M — 1].

(b) Shifted
spectrum showing
a full period in the
same interval.

(¢) Fourier
spectrum of an
image, showing the
same back-to-back
properties as (a),
but in two
dimensions.

(d) Centered
Fourier spectrum.




Basic Filtering in the Frequency Domain using
Matlab

N

/function Normalized DFT = Img_DFT(img)
img=double(img); % So mathematical operations can be conducted on

% the image pixels.
[R,C]=size(img);

forr=1:R % To phase shift the image so the DFT will be
for c=1.C % centered on the display monitor
phased_img(r,c)=(img(r,c))*(-1)(r+c);
end
end
fourier_img = fft2(phased_img); %Discrete Fourier Transform

mag_fourier_img = abs(fourier_img ); % Magnitude of DFT
Log _mag_fourier_img = log10(mag_fourier _img +1);

Max = max(max(Log_mag_fourier_img));

Normalized DFT = (Log_ mag_fourier_img )*(255/Max);
Imshow(uint8(Normalized DFT))




Basic Filtering in the Frequency Domain

N

QN hA W=

[nput Enhanced
image image

FIGURE 4.5 Basic steps for filtering in the frequency domain.

Multiply the input image by (-1)**Y to center the transform
Compute F(u,v), the DFT of the image from (1)

Multiply F(u,v) by a filter function H(u,v)

Compute the inverse DFT of the result in (3)

Obtain the real part of the result in (4)

Multiply the result in (5) by (-1)x*Y



An image and its Freqguency information

a
b

FIGURE 4.4

(a) SEM image of
a damaged
integrated circuit.
(b) Fourier
spectrum of (a).
(Original image
courtesy of Dr. 1.
M. Hudak,
Brockhouse
[nstitute for
Materials
Research,
McMaster
University,
Hamilton,
Ontario, Canada.)




Filtering out the DC Frequency Component

FIGURE 4.6
Result of filtering
the image in

Fig. 4.4{a) with a
notch filter that
set to O the
F(0,0) term in
the Fourier
transform.

Notch Filter

0 if (u,v)=(M/2,N/2)

1 otherwise

H(u,v)={



Low-pass and High-pass Filters
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Low Pass Filter attenuate
high frequencies while
“passing” low frequencies. .

High Pass Filter
attenuate low frequencies
while “passing” high
frequencies.

ab

cd

FIGURE 4.7 (a) A two-dimensional lowpass filter function. {(b) Result of lowpass filtering the image in Fig. 4.4(a).
{c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4(a).
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FIGURE 4.8

Result of highpass
filtering the image
in Fig. 4.4(a) with
the filter in

Fig. 4.7(c),
modified by
adding a constant
of one-half the
filter height to the
filter function.
Compare with
Fig. 4.4(a).

High-pass Filtering




Low-pass and High-pass Filters
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FIGURE 4.9

(a) Gaussian
frequency domain
lowpass filter.

(b) Gaussian
frequency domain
highpass filter.

(c) Corresponding
lowpass spatial
filter.

(d) Corresponding
highpass spatial
filter. The masks
shown are used in
Chapter 3 for
lowpass and
highpass filtering.



Smoothing Freguency Domain,

= D, v
Dy ( )

8- biic

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displaved as an
image. (¢) Filter radial cross section.

(1 if D(u,v)< D,
0 If D(u,v) > D,

D(u,v) = |u-M/2)? + (v—N/2)2|"

H(u,v) =+«




Smoothing Freqguency Domain,

;

d
]

aaaaaaadd

ab

FIGURE 4.11 (a) An image of size 500 x 500 pix*]s and (b) its Fourier spectrum. The
superimposed circles h: 1ve radii values of 5, 15, 30, 80, and 230, which enclose 92.0,
04.6,96.4,98.0, and 99.5% of the image power, respectively.

M —IN -1
Total Power - B = ZZ‘F(U V)‘

u=0 v=0

The remained percentage
sower after filtration @ =100x| > >"|F(u,v)|/ P,




Smoothing Freguency Domain,

N

f.=15
a=94.6%

f. =80
a = 98%
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Cause of Ringing
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FIGURE 4.13 (a) A frequency-domain ILPF of radius 5. (b} Corresponding spatial

filter (note the ringing). {c) Five impulses in the spatial domain, simulating the values
of five pixels. (d) Convolution of (b} and (c) in the spatial domain.




Smoothing Frequency Domain,
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FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displaved as an
image. (¢) Filter radial cross sections of orders 1 through 4.

1
1+[D(u,v)/ D, "

H(u,v) =



Smoothing Freguency Domain,
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Butterworth Low-pass

Filter: n=2

Radii= 15

Radlii= 80
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a b FIGURE 4.15 {a) Original image. (b)—(1) Results of filtering with BLPFs of order 2,
cd with cutoff frequencies at radii of 5, 15, 30, 80, and 230, as shown in Fg. 4.11(b).
g I Compare with Fig. 4.12.

Radii= 5

Radlii= 30

Radlii= 230




Smoothing Freguency Domain,

abcd

FIGURE 4.16 (a)—(d) Spatial representation of BLPFs of order 1, 2,5, and 20, and corresponding gray-level
profiles through the center of the filters (all filters have a cutoff frequency of 53). Note that ringing increases
as a function of filter order.



Smoothing Freguency Domain,

Hu, v) H(u. v)
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FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c¢) Filter
radial cross sections for various values of D,.

2 2
H (U,V) _ e—D (u,v)/2D;



Smoothing Freguency Domain,
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Gaussian Low-pass

Radii= 15

Radlii= 80
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FIGURE 4.18 (a) Original image. (b)—(T) Results of filtering with Caussian lowpass
filters with cutoll frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in
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Fig. 4.11(b). Compare with Figs. 4.12 and 4.15.

Radli= 5

Radlii= 30

Radii= 230
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FIGURE 4.19

(a) Sample text of
poor resolution
(note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

Smoothing Frequency Domain,

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using 00"
as 1900 rather than the yEgr

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yEar
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Smoothing Freguency Domain,

abc

FIGURE 4.20 (a) Original image {1028 X 732 pixels). (b) Result of filtering with a GLPF with D, = 100.
{c) Result of filtering with a GLPF with D, = 80. Note reduction in skin fine lines in the magnified sections
of (b) and (c).



Smoothing Freqguency Domain,
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FIGURE 4.21 (a) Image showing prominent scan lines. (b) Result of using a GLPF with D, = 30. (¢) Result
of using a GLPF with Dy = 10. (Original image courtesy of NOAA.)




Sharpening Frequency Domain Filters
ol Hpp(u,v) =1 - Hyp(u,v)

® - Ideal HPF

* D, v)

Hiw, v)
L
L0

® - Butterworth HPF

D, v)

Hiw, v
)
L0

Hiu, v)

- Gaussian HPF

= D, v)
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FIGURE 4.22 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass

filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



Sharpening Freguency Domain Filters

BEMERE V

FIGURE 4.23 Spatial representations of typical (a) ideal. (b) Butterworth, and (c¢) Gaussian frequency
domain highpass filters. and corresponding grav-level profiles.
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Sharpening Freguency Domain,
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FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Dy = 15, 30, and 80,
respectively. Problems with ringing are quite evident in (a) and (b).

0 If D(u,v) <
1 If D(u,v) > D,

-

H(u,v) =+

.



Sharpening Freqguency Domain,
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FIGURE 4.25 Results of highpass filtering the image in Fig. 4.11(a) using a BHPF of order 2 with D, = 15.
30, and 80, respectively. These results are much smoother than those obtained with an ILPF.

1
1+[D, / D(u,v)["

H(u,v)=



Sharpening Freguency Domain,
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FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with D, = 15,
30, and 80, respectively. Compare with Figs. 4.24 and 4.25.

2 2
H (U,V) :1_e—D (U,V)/ZDO
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Homomorphic Filtering




Homomorphic Filtering

p
UV
f(x.y) ﬂwwwmﬂw Ii:> exp g(x, )
ab
FIGURE 4.33

{a) Original
image. (b) Image
processed by
homomorphic
filtering (note
details inside
shelter).
{Stockham.)

FIGURE 4.31
Homomorphic
filtering approach
for image
enhancement.




Convolution

N

i) . g(t) = k(t)*h(t)
k(t) h(t) 9(t) G(f) = K(fH(f)

* is a convolution operator and not multiplication

1 M-1
g(t) = k(®)*h(t) = - 2 k(t—m)h(m)

m=0
k(t)
h(t
(t A
2
1 T 1 o)
l t
-1 12 3




N

Convolution

1 M-1
9(0) =y 2, k(0-m)h(m)

g(t)




Convolution

1 T g(t)




Convolution

1 T g(t)




Convolution

1 T g(t)




Convolution

1 T - g(t)




Convolution

1 T - g(t)




Convolution

1 T - g(t)




2-Dimensions Convolution

M-1N-1

f(x,y)*h(X, y)——ZZf(mn)h(x m,y —n)

m=0 n=0
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Correlation

k(t) —

h(t)

— g(t)

g(t) = k(t)oh(y)
G(f) = K(f)" H(f)

1 M -1
g(t) = k(t)oh(t) = = Z_;)k(t +m)h(m)

h(t

-H

m
k()
2 |
1 Q

g(t)

2__ o)




Correlation
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FIGURE 4.41

(a) Image.

(b} Template.

() and

{d) Padded
images.

(&) Correlation
function displayed
as an image.

[y Horizon tal
profile ling
through the
highest value in
(e).showing the
point at which the
best match ook
place.

Highest correlation
value

Giray-level
profile line
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FIGURE 4.36 Left:
convolution of
two discrete
functions. Right:
convolution of the
same functions,
taking into
account the
implied
periodicity of the
DFT. Note in (j)
how data from
adjacent periods
corrupt the result
of convolution.
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FIGURE 4.37
Result of
performing
convolution with
extended
functions.
Compare

Figs. 4.37(e) and
4.36(e).
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Convolution

Zero padding
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|
B B ™
1 ! Incorrect B
A P One of the two
Correct original images
I
N 2 | ) A
1 +
| <
I
|
1 Missing
I
i
| i
o BD-1— | :
Result of filtering in the frequency domain without
properly padding the inputimages
-
P Correct
P
X 0
| ) ol
¢ |

Result of filtering in the frequency domain with
properly padded input images.

Properly extended {padded) image

A+C -1
B+D-1

ab
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FIGURE 4.38
[ustration of the
need for function
padding.
(a) Result of
performing 2-D
convolution
without padding.
ib) Proper
function padding.
(c) Correct
convolution
result.



Convolution
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FIGURE 4.39 Padded lowpass filter is the spatial domain (only the real part is shown).

FIGURE 4.40 Result of filtering with padding. The image is usually cropped to its
original size since there is little valuable information past the image boundaries.



