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Digital Image Processing 

 

Image Restoration 

(Chapter 7) 

• Image restoration vs. image enhancement 

 Enhancement: 

 largely a subjective process 

 Priori knowledge about the degradation is not a must 
(sometimes no degradation is involved) 

 Procedures are heuristic and take advantage of the 
psychophysical aspects of human visual system    

 Restoration: 

 more an objective process 

 Images are degraded 

 Tries to recover the images by using the knowledge 
about the degradation  

Image Restoration 
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• Two types of degradation 
 Additive noise 

 Spatial domain restoration (denoising) techniques are preferred 

 Image blur 
 Frequency domain methods are preferred 

• We model the degradation process by a degradation 
function h(x,y), an additive noise term, (x,y), as: 
 

g(x,y)=h(x,y)*f(x,y)+ (x,y) 
 

 f(x,y) is the (input) image free from any degradation 
 g(x,y) is the degraded image 
 * is the convolution operator 
 The goal is to obtain an estimate of f(x,y) according to the 

knowledge about the degradation function h and the additive noise   

 In frequency domain: G(u,v)=H(u,v)F(u,v)+N(u,v) 

An Image Degradation Model 

A Model of the Image 
Degradation/Restoration Process 
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• We first consider the degradation due to noise only 
 h is an impulse for now ( H is a constant)  

• White noise 
 Autocorrelation function is an impulse function multiplied by a 

constant 

   

 

 

 

 It means there is no correlation between any two pixels in the 
noise image 

 There is no way to predict the next noise value 

 

 The spectrum of the autocorrelation function is a constant 
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Noise Model 

• Noise (image) can be classified according the 
distribution of the values of pixels (of the noise image) 
or its (normalized) histogram  

• Gaussian noise is characterized by two parameters,  
(mean) and σ2 (variance), by 

 

 

 

 

• 70% values of z fall in the range [(-σ),(+σ)] 

• 95% values of z fall in the range [(-2σ),(+2σ)] 
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Gaussian Noise 

 

   

 

The mean and variance of this 
density are given by 

 

 

a and b can be obtained through 
mean and variance 
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 The mean and variance of this 
density are given by 

 

 

 a and b can be obtained 
through mean and variance 
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 The mean and variance of 
this density are given by 

 

 

 

 Special case pf Erlang PDF 
with b=1 












0for            0

0for      
)(

z

zae
zp

az

2

2 1
 and  /1

a
a  

Exponential noise Models 



1/10/2014 

6 

 

 

 

The mean and variance of 
this density are given by 
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Uniform noise Models 

 a and b usually are extreme 
values because impulse 
corruption is usually large 
compared with the strength of 
the image signal 
 
 

 If either Pa or Pb is zero, the 
impulse noise is called unipolar  
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Effect of Adding Noise to 
Sample Image 

Effect of Adding Noise to Sample Image 
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• Arises typically from electrical or 
electromechanical interference 
during image acquisition 

  

• It can be observed by visual 
inspection both in the spatial 
domain and frequency domain 

 

• The only spatially dependent 
noise will be considered  

Periodic Noise 

• Periodic noise 

 Parameters can be estimated by inspection of the spectrum 

• Noise PDFs 
 From sensor specifications 

 Capture a set of images of plain environments 

 Parameters of the PDF can be estimated from small patches of 
constant regions of the noisy images 

 In most cases, only mean and variance are to be estimated 

Estimation of Noise Parameters 
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• Mean filters 
 Arithmetic mean filter 
 Sx,y is the mask 

 

 Geometric mean filters 
 Tends to preserve more details 

 

 Harmonic mean filter   
 Works well for salt noise  
 but fails for pepper noise  

 
 Contra-harmonic mean filter 
 Q: order of the filter 
 Positive Q works for pepper noise 
 Negative Q works for salt noise 
 Q=0arithmetic mean filter 
 Q=-1harmonic mean filter   
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Restoration of Noise (De-Noising) 

De-Noising 
Corrupted by 

Gaussian Noise 

Mean 
Filtering Geometric 

Mean Filtering 



1/10/2014 

10 

De-Noising Corrupted by 
pepper noise 

Corrupted by 
salt noise 

3x3 
Contraharmonic 
Q=1.5 

3x3 
Contraharmonic 
Q=-1.5 

De-Noising with wrong filter sign 
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• Median filter 
 Median represents the 50th percentile of a ranked set of 

numbers  

 
• Max and min filter 

 Max filter uses the 100th percentile of a ranked set of numbers 

 Good for removing pepper noise 
 

 Min filter uses the 1 percentile of a ranked set of numbers 
 Good for removing salt noise  

 
• Midpoint filter 

 
 Works best for noise with symmetric PDF like Gaussian or uniform noise  
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De-Noising Corrupted by salt & 
pepper noise 
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median filtering 

Two pass 
median filtering 

Three pass 
median filtering 
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De-Noising 

Max Filtering Min Filtering 

Corrupted by 
pepper noise 

Corrupted by 
salt noise 

• Take the mean value of the pixels (enclosed by an m×n 
mask) after deleting the pixels with the d/2 lowest and 
the d/2 highest gray-level values 

 

 

 

 gr(s,t) represent the remaining mn-d pixels  

 It is useful in situations involving multiple types of 
noise like a combination of salt-and-pepper and 
Gaussian   
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De-Noising 

Corrupted by 
additive Uniform 
noise 

Added salt  & 
pepper noise 

5x5 Mean 
Filtering 5x5 Geo-Mean 

Filtering 

5x5 Median 
Filtering 

5x5 Alpha-
trimmed Mean 
Filtering 

• Adaptive Local Noise Reduction Filter 
 Assume the variance of the noise     is either known or 

can be estimated satisfactorily 
 Filtering operation changes at different regions of an 

image according to local variance     and mean mL 
calculated within an M×N region 
 

 If             , the filtering operation is defined as 
 

  

 
 If              , the output takes the mean value 

 
 That is: 
   

 At edges, it is assumes that  
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De-Noising Corrupted by 
Gaussian noise 

Mean 
Filtering 

Geo-Mean 
Filtering 

Adaptive 
Filtering 

• Median filter is effective for removing salt-
and-pepper noise 

 The density of the impulse noise can not be too 
large 

• Adaptive median filter 

 Notation 

 Zmin: minimum gray value in Sxy 

 Zmax: maximum gray value in Sxy 

 Zmed: median of gray levels in Sxy 

 Zxy: gray value of the image at (x,y) 

 Smax: maximum allowed size of Sxy 

Adaptive Median Filter 
(De-Noising) 
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• Two levels of operations 
 Level A:  
 A1= Zmed –Zmin 

 A2= Zmed –Zmax 

 If A1 > 0 AND A2 < 0, Go to level B 
   else increase the window size by 2 
 If window size <= Smax  repeat level A 
    else output Zxy 

 

 Level B: 
 B1= Zxy –Zmin 

 B2= Zxy –Zmax 

 If B1 > 0 AND B2 < 0, output Zxy 
   else output Zmed 

 
 

Test whether Zmed is part 

of s-and-p noise.  

• If yes, window size is 

increased 

Test whether Zxy is part 

of s-and-p noise.  

• If yes, apply regular 

median filtering  

Adaptive Median Filter 
(De-Noising) 

De-Noising 

Median Filtering Adaptive Median 
Filtering 
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• Lowpass and highpass filters for image 
enhancement can be used. 

 

• Bandreject, bandpass, and notch filters as 
tools for periodic noise reduction or removal 
can also be used. 

Periodic Noise Reduction by Frequency 
Domain Filtering  

• Bandreject filters remove or attenuate a band of 
frequencies about the origin of the Fourier transform. 

• Similar to those LPFs and HPFs, we can construct ideal, 
Butterworth, and Gaussian bandreject filters. 

  

• Ideal bandreject filter 

 

 

Bandreject Filters 
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Butterworth Bandreject Filters 
For reduction of Periodic Noise 

Bandbass Filters 

),(1),( vuHvuH brbp 

Bandpass filter performs the opposite of a bandreject 
filter 
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Notch Filters 

 

• Notch filter rejects frequencies in predefined neighborhoods 
about a center frequency. 

• It appears in symmetric pairs about the origin because the 
Fourier transform of a real valued image is symmetric. 
 

• Ideal notch filter 
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Notch Filters that pass, rather than suppress 

• NR filters become highpass filters if NP  filters 
become lowpass, and vise versa.  
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Notch Filters 

You can see the 
effect of scan lines 

Spectrum of 
image 

Notch pass 
filter 

IFT of NP 
filtered image 

Result of 
NR filter 

Optimum Notch Filtering 
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• In the ideal case, the original image can be restored if 
the noise can be estimated completely.  

 That is: 

 

• However, the noise can be only partially estimated. This 
means the restored image is not exact.  

 Which means 
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Optimum Notch Filtering 

• The restored image can be improve by introducing a 
modulation function  

   

 

 Here  the modulation function is a constant within a 
neighborhood of size (2a+1) by (2b+1) about a point (x,y) 

 We optimize its performance by minimizing the local variance 
of the restored image at the position (x,y)  
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Optimum Notch Filtering 
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Optimum Notch Filtering 

Image size: 512x512 

a=b=15 
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• Degradation Model 
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System Degradation effects: 

Linear, Position-Invariant Degradation  
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In the absence of additive noise: 

For scalar values of a and b, H is linear if: 

H is Position-Invariant if: 
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• Many types of degradation can be approximated by 
linear, position-invariant processes 

• Extensive tools of linear system theory are available 

• In this situation, restoration is image deconvolution 
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• Ways to estimate the degradation function for use in 
image restoration: 

 Observation 

 Experimentation 

 Mathematical modeling  

 

 Estimating by Image Observation 
 We look for a small section of the image that has strong signal 

content (                 ) and then construct an un-degradation of this 
section by using sample gray levels (                ). 

 

 

 

 Now, we construct a function              on a large scale, but having 
the same shape.       

   

Estimating the Degradation Function  
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Estimating by Modeling 

6/522 )(),( vukevuH Atmospheric turbulence model: 

Negligible 
turbulence 

Mid 
turbulence 
k=0.001 

High 
turbulence 
k=0.0025 

Low 
turbulence 
k=0.00025 
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Inverse Filtering 
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The simplest approach to restoration is direct inverse 
filtering: 
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Even if we know the 
degradation function, we 
cannot recover the un-
degraded image 

If the degradation has zero or very small values, then the ratio 
N/H could easily dominate our estimation of F . 

One approach to get around the zero or small-value problem 
is to limit the filter frequencies to value near the origin. 
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Inverse Filtering 

Full inverse 
Filtering 

Filtering with H cut 
off outside a radius 
of 70 

Filtering with H 
cut off outside a 
radius of 40 

Filtering with H 
cut off outside a 
radius of 85 

Degraded 
Image 

Minimum Mean Square Error Filtering 
(Wiener Filtering) 

])ˆ[( 22 ffEe 

This approach incorporate both the degradation 
function and statistical characteristic of noise into the 
restoration process. 

Image and noise 
are random 
process 

The objective is to find an estimation for f  such that minimized e2 
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Wiener Filtering 

Full inverse 
filtering 

Radially limited 
inverse filtering  

Wiener filtering 

(K was chosen interactively) 

Wiener Filtering Inverse filtering 

 

 

 

Reduced 
noise 

variance 

 

 

Wiener filtering 
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Geometric Transformations 

• Unlike the techniques discussed so far, 
geometric transformations modify the spatial 
relationships between pixels in an image. 

 

Geometric transformation: RUBBER-SHEET 
TRANSFORMATION 

Basic Operations: 

 1. Spatial Transformation 

 2. Gray-level Interpolation 

Spatial Transformations 

),(

),(

yxsy

yxrx





8765

4321

),(

),(

cxycycxcyxsy

cxycycxcyxrx




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Spatial Transformations 

Gray-level Interpolation 

dyxcybxayxv ),(
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Geometric Transformations 

Image showing 
tiepoints 

Tiepoints after 
geo. distortion 

Geo. Dist. Image 
using nearest NI 

Geo. Dist. Image 
using Bilinear 
Interp. 

Restored image 

Restored image 

Geometric Transformations 


