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Digital Image Processing

Jmage Restoration
(Chapter 7)

Image Restoration

e Image restoration vs. image enhancement

= Enhancement:
+ largely a subjective process

+ Priori knowledge about the degradation is not a must
(sometimes no degradation is involved)

» Procedures are heuristic and take advantage of the
psychophysical aspects of human visual system
= Restoration:
+ more an objective process
+ Images are degraded

+ Tries to recover the images by using the knowledge
about the degradation



1/10/2014

An Image Degradation Model

,Two types of degradation
= Additive noise

+ Spatial domain restoration (denoising) techniques are preferred
= Image blur

+ Frequency domain methods are preferred
We model the degradation process by a degradation
function h(x,y), an additive noise term, n(x,y), as:

g(x,y)=h(x,y)(x,y)+ n(x,y)

f(x,y) is the (input) image free from any degradation
g(x,y) is the degraded image
*is the convolution operator

The goal is to obtain an estimate of f(x,y) according to the
knowledge about the degradation function h and the additive noise n

= In frequency domain: G(u,v)=H(u,v)F(u,v)+N(u,v)

A Model of the Image
Degradation/Restoration Process

Degradation
function
H

Restoration
filter(s)

DEGRADATION



Noise Model

& We first consider the degradation due to noise only
= his an impulse for now ( H is a constant)
e White noise
= Autocorrelation function is an impulse function multiplied by a

constant
¢ N-1M-1
a(x,y) = n(s,t)-n(s—x,t—y)=Ny5(x,y)
t=0 s=l

+ It means there is no correlation between any two pixels in the
noise image
+ There is no way to predict the next noise value

= The spectrum of the autocorrelation function is a constant

Gaussian Noise

* Noise (image) can be classified according the
distribution of the values of pixels (of the noise image)
or its (normalized) histogram

e Gaussian noise is characterized by two parameters, p
(mean) and o2 (variance), by

1
) e

e 70% values of z fall in the range [(u-0),(u+0)]
* 95% values of z fall in the range [(u-20),(u+20)]

e—(z—,u)2/20'2
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Gaussian Noise

Ciaussian

08

W 2lma

Rayleigh noise Mode/

2 —(z-a)?/b
Z(z-a)e
p(2)={p ™%
0 forz<a
The mean and variance of this
density are given by pC

u=a++/zabl4 ando’® = b(4—7)

forz>a

it

\

a and b can be obtained through
mean and variance

Rayleigh
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Erlang (Gamma) noise Models

abe—l .
0(z) = —(b—l)!e forz>0
0 forz<0

= The mean and variance of this
density are given by

u=bla ando’ =

= a and b can be obtained
through mean and variance

Exponential noise Models

ae
p(2) :{O

s The mean and variance of
this density are given by

—az

forz>0
forz<0

piz)

u=1/a andazzé

= Special case pf Erlang PDF
with b=1
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Gamma

a1
BT

(b —1)/a

Exponential




Uniform noise Models

“~~——™

1 !
—— jfagz<hb
P(z)=1b-a
0 otherwise
The mean and variance of

this density are given by

&

piz)
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(b-a)’

=(a+hb)/2 ando? =
1= (a+b) o 5

Impulse (salt-and-pepper) noise Models

» a and b usually are extreme
values because impulse
corruption is usually large
compared with the strength of
the image signal

= If either P, or P, is zero, the
impulse noise is called unipolar

Uniform

pz)

F h

i

p(z)=4P, forz=>b

b

P, forz=a

0 otherwise

Impulse




Effect of Adding Noise to
Sample Image

MM

Gaussian Rayleigh Gamma

Effect of Adding Noise to Sample Image

Exponential Uniform Salt & Pepper
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Periodic Noise

e Arises typically from electrical or
electromechanical interference
during image acquisition

e It can be observed by visual
inspection both in the spatial
domain and frequency domain

e The only spatially dependent
noise will be considered

Estimation of Noise Parameters
e Periodic noise

-4

"'m Parameters can be estimated by inspection of the spectrur
¢ Noise PDFs

= From sensor specifications
= Capture a set of images of plain environments

= Parameters of the PDF can be estimated from small patches of
constant regions of the noisy images

= In most cases, only mean and variance are to be estimated

=

abc

FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Rayleigh,
and (¢) the uniform noisy images in Fig. 5.4.



Restoration of Noise (De-Noising)

e_Mean filters

= Arithmetic mean filter £ L
+ S, is the mask fxy)=

2.9(s,1)

1
mn (s oes, ,

1

= Geometric mean filters o
+ Tends to preserve more details f(x,y) ={ H g(S,t):|

(s.)eS,

= Harmonic mean filter X "
+ Works well for salt noise f(xy)=

+ but fails for pepper noise 1

(5.0)e5 g(s,t)

= Contra-harmonic mean filter
+ Q: order of the filter z g(s, )%
+ Positive Q works for pepper noise  » (5,005,
+ Negative Q works for salt noise f(x,y)= W
+ Q=0=>arithmetic mean filter g9(s,

. { 1)eS,
+ Q=-1=>»harmonic mean filter (B0Swy

Corrupted by
De-Noising Gaussian Noise

ab
cd

FIGURE 5.7 (a)
X-ray image.

(b) Image
corrupted by
additive Gaussian

noise. (¢) Result
of filtering with
an arithmetic
mean filter of size
3 X 3.(d) Result
of filtering with a
geometric mean
filter of the same
size. (Original

i image courtesy of
| Mr. Joseph E.
| Pascente, Lixi,
Inc.)
Mean
Filtering +~—__Geometric

Mean Filtering
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_ e Corrupted by Corrupted by
De NOISIﬂg pepper noise salt noise
-~ ab g / 3
&l
FIGURE 5.8
(a) Image

carrupted by
pepper noise with
a probability of
0.1. (b) Image
corrupted by salt
noise with the
same probability.
(c) Result of
filtering (a) with a
Ix3

contraharmonic
filter of order 1.5
(d) Result of
filtering (b) with
Q=-15.

3X3 —
Contraharmonic
Q=1.5

3x3
Contraharmonic
Q=-15

De-Noising with wrong filter sign

ab

FIGURE 5.9 Results
of selecting the
wrong sign in
contraharmonic
filtering. (a) Result
of filtering

Fig. 5.8(a) witha
contraharmonic
filter of size 3 X 3
and Q = —1.5.

(b) Result of
filtering 5.8(b) with
Q=15

1/10/2014
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Filters Based on Order Statistics (De-Noising)

* Median filter
= Median represents the 50t percentile of a ranked set of

numbers )
f(x,y)=median{g(s,t)}

(sheSyy

e Max and min filter

= Max filter uses the 100t percentile of a ranked set of numbers
+ Good for removing pepper hoise

= Min filter uses the 1 percentile of a ranked set of humbers
+ Good for removing salt noise

e Midpoint filter fxy)= 1{ max {g(s,t)}+ (S(gier;xy{g(s,t)}}

2 (s,t)eSyy

+ Works best for noise with symmetric PDF like Gaussian or uniform noise

De-Noising Corrupted by salt & One pass
pepper noise median filtering
N ab
Gl

FIGURE 5.10

(a) Image
corrupted by salt-
and-pepper noise
with probabilities
E,=pF=01
(b) Result of one
pass with a
median filter of
size 3 X 3.

(c) Result of
processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.

Three pass

Two pass ———*
= median filtering

median filtering
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Corrupted by
De'NOISIng pepper noise \

/ salt noise

Corrupted by

ab

FIGURE 5.11

(a) Result of
filtering

Fig. 5.8(a) with a
max filter of size
3 X 3.(b) Result
of filtering 5.8(b)
with a min filter
of the same size.

Max Filtering Min Filtering

Alpha-Trimmed Mean Filter (De-Noising)

e Take the mean value of the pixels (enclosed by an mxn
mask) after deleting the pixels with the d/2 lowest and
the d/2 highest gray-level values

f(xy)=— > 0g,(st)

mn-— d (5.)€5,,

= g,(s,t) represent the remaining mn-d pixels

» It is useful in situations involving multiple types of
noise like a combination of salt-and-pepper and
Gaussian

1/10/2014
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De-Noising

Added salt &

I R N - :
Corrupted by pepper noise

additive Uniform
noise

5x5 Mean
Filtering 2x3 Gea-Mean
Filtering
5x5 Median o 5x5 Alpha-
Filtering \ trimmed Mean
Filtering

¢ % [ =

a b FIGURE5.12 (a) Image corrupted by additive uniform noise. (b) Image additionally cor-

e d rupted by additive salt-and-pepper noise. Image in (b) filtered with a 3 X 5:(c) arithmetic

e I mean filter:(d) geometric mean filter: (¢) median filter; and (f) alpha-trimmed mean fil-
ter withd = 5.

Adaptive Filters (De-Noising)

» Adaptive Local Noise Reduction Filter

= Assume the variance of the noise 0' is either known or
can be estimated satisfactorily

Filtering operation chan?es at different regions of an
image according to local variance o7 and mean m,
calculated within an MxN region

If of >0, the filtering operation is defined as
2
N (o)
f(xy)=g(x, y)—a—’;[g(x, y)—m]
L
If of <o?, the output takes the mean value

2

. O
+ That is: —';is set tobel
o

At edges, it is assumes that o} > o7

13



De'NOiSiﬂg Corrupted by

Geo-Mean
Filtering

Adaptive Median Filter
(De-Noising)

e Adaptive median filter

Gaussian noise

ab
cd

FIGURE 5.13

(a) Image
corrupted by
additive Gaussian
noise of zero
mean and
variance 1000.

(b) Result of
arithmetic mean
filtering,.

(c) Result of
geometric mean
filtering,.

(d) Result of
adaptive noise
reduction
filtering. All filters
were of size
TxT

large

= Notation

Mean
Filtering

e Median filter is effective for removing salt-
and-pepper noise
= The density of the impulse noise can not be too

* Zin: Minimum gray value in S,

* Zax: Maximum gray value in S,

* Zyeq: Median of gray levels in S,

* Z,,: gray value of the image at (x,y)
* Smax: Maximum allowed size of S,,

/ Filtering

1/10/2014
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Adaptive Median Filter
(De-Noising)

< Two levels of operations

n Level A:
* Al= Zyed—Zinin
¢ A2= Zioq —Zpnax
+ If A1 > 0 AND A2 < 0, Go to level B
else increase the window size by 2
+ If window size <= S, repeat level A
else output Z,,

Test whether Z,..4 is part
of s-and-p noise.

* If yes, window size is

increased

= Level B: Test whether Z,, is part
¢ Bl=2,,Zy, of s-and-p noise.
* B2=Z,,~Zna o If yes, app_ly r(_egular
+ If B1 > 0 AND B2 < 0, output Z,, median filtering

else output Z,o4

De-Noising

Median Filtering Adaptive Median
Filtering

abc

FIGURE 5.14 (a) Image corrupled by salt-and-pepper noise with probabilities P, = B, = 0.25. (b) Result of fil-
tering with a7 X 7 median filter. (¢) Result of adaptive median filtering with Sy, = 7.

1/10/2014
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Periodic Noise Reduction by Frequency
Domain Filtering

* Lowpass and highpass filters for image
enhancement can be used.

¢ Bandreject, bandpass, and notch filters as
tools for periodic noise reduction or removal
can also be used.

Bandreject Filters

e Bandreject filters remove or attenuate a band of
frequencies about the origin of the Fourier transform.

e Similar to those LPFs and HPFs, we can construct ideal,
Butterworth, and Gaussian bandreject filters.

e Ideal bandreject filter

()
1 |f D(U y V) < DO - W? ; |I"I ||“|l|||||“n|||llll'”"‘

H(uv)=1{0 if DO—W?§ D(U,V) < D0+W?

1 if D(u,v)>D, +%

1/10/2014
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Butterworth Bandreject Filters

1
2n
14 D(u,v)W }

H(u,v) =

Gaussian Bandreject Filters

1| D*(u,v)-D§
D(u,v)W

2

H(u,v)=1-e

1/10/2014
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Butterworth Bandreject Filters
For reduction of Periodic Noise

Bandbass Filters

ab

cd

FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.

(b) Spectrum of (a).

(¢) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering. (Original
image courtesy of
NASA.)

Bandpass filter performs the opposite of a bandreject

filter

FIGURE 5.17
Noise pattern of
the image in

Fig. 5.16(a)
obtained by
bandpass filtering.

Hy, (U,v) =1-H, (u,v)

1/10/2014
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Notch Filters

« Notch filter rejects frequencies in predefined neighborhoods
about a center frequency.

e It appears in symmetric pairs about the origin because the
Fourier transform of a real valued image is symmetric.

¢ Ideal notch filter

0 if D,(u,v)<D,orD,(u,v) <D,
1  otherwise

H(u,v):{

DY) = [u—M /20, +(v-N/2-v, F ]
D) = [u-M/2+u,f + (=N 724y, P ]

Butterworth Notch Filters

1

H(u,v)=

{ 02 T
1+
D, (u,v) D, (u,Vv)

19
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Gaussian Notch Filters

1] Dy (uv)D, (u,)
D§

H(u,v)=1-e ’

Notch Filters that pass, rather than suppress

H,uVv)=1-H_(u,v)

VR filters become highpass filters if VP filters
become lowpass, and vise versa.

20



Notch Filters

You can see the — §
effect of scan lines

Notch pass
et ol - fier
IFT of NP Result of

filtered image~_ Ml R filter

ab

FIGURE 5.20

{a) Image of the
Martian terrain
taken by
Mariner 6.

(b) Fourier
spectrum showing
periodic
interference.
(Courtesy of
NASA.)

1/10/2014
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Optimum Notch Filtering

“~~——™

In the ideal case, the original image can be restored if
the noise can be estimated completely.

= That is: f (X, y) — g(X, y) _77()(1 y)

However, the noise can be only partially estimated. This
means the restored image is not exact.

= Which means f(x,y)=g(x,y)-n(x,Yy)

A(x,y) = IFT {H(u,v)G(u,v)}

Optimum Notch Filtering

e The restored image can be improve by introducing a
modulation function

f(x,¥)=g(X, y) = WX, Y)H(XY)

= Here the modulation function is a constant within a
neighborhood of size (2a+1) by (2b+1) about a point (x,y)

= We optimize its performance by minimizing the local variance
of the restored image at the position (X,y)

5 i 1 a b n _; 2
o’ (X, y)_—(2a+1)(2b+1) s;t;[f(x+s’y+t) f(x, y)}
f:(x,y):;za: b f(x+s,y+t)

(2a+1)(2b+1) ==

1/10/2014
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 Optimum Notch Filtering

Points on or near Edge of the image can be treated by considering
partial neighborhoods

, 1
o (xy)= (2a+1(2b+1) SZﬂZ{[g(X +8,y+t)

—W(X+S,y+t)a(x+s,y+t)]
—[a(x, y) —w(x, y)i(x, yI¥’

Assumption: w(x+s,y+t)=w(x,y) for —a<s<aand -b<t<b

= W(X, )X, y) = W(X, y)7 (X, y)

_Optimum Notch Filtering

a*(x,Y) _mzs aZ{[g(X+s y+t)

—W(X, Y)A(x+8,y+1)]
~[g(x, y)—W(x, )7 (X, y)}

To minimize - o*(x, y) o0 (x.y) _
ow(x,y)
= W(X,y) = W_”(Xy) ~g(x y)7 (%, Y)

7%, Y) =17 % (X, )

23
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Optimum Notch Filtering

paloes
o

BN BN

a(x,y) (X, y)

Optimum Notch Filtering

FIGURE 5.21 Fourier spectrum (without shifting) of the image shown in Fig. 5.20(a).
(Courtesy of NASA.)

24
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Optimum Notch Filtering

ab

FIGURE 5.22 (a) Fourier spectrum of N (u, v).and (b) corresponding noise interference
pattern n(x, y). (Courtesy of NASA.)

e P T e

Optimum Notch Filtering

Image size: 512x512
a=b=15

25
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System Degradation effects:
Linear, Position-Invariant Degradation

e Degradation Model

g(x, y)=HLf(x, y)]+7(x,y)
In the absence of additive noise:

For scalar values of a and b, H is linear if:
Hla f,(x, y)+b f,(x, y)I=aH[f,(x, y)]+ b H[f,(x y)]

H is Position-Invariant if:
g(x, ) =H[f(x,N]= H[f(X-a,y-B)]=9(x-a,y-p)

Linear, Position-Invariant Degradation

In the presence of additive noise:

g(x.y) = [ [ f (@ p)h(x—a,y—B)dadB+n(xy)

—00—00

g(x,y) =h(x, y)* f(x, y)+n(xy)
G(u,v)=H(u,v) F(u,v)+N(u,v)

* Many types of degradation can be approximated by
linear, position-invariant processes

» Extensive tools of linear system theory are available

¢ In this situation, restoration is image deconvolution

26
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Estimating the Degradation Function

Ways to estimate the degradation function for use in
image restoration:
- Observation

Experimentation

Mathematical modeling

Estimating by Image Observation

We look for a small section of the image that has strong signal
content ( 95(X, Y) ) and then construct an un-degradation of this
section by using sample gray levels ( fs(X’ y) ).

H,(u,v) = _(%S(u,v)

F, (u,v)
Now, we construct a function H (u,v) on a large scale, but having
the same shape.

Estimating by Experimentation

We try to obtain impulse response of the degradation
by imaging an impulse (small dot of light) using the
system. Therefore G(u,v)

H(u,v)=

ab

FIGURE 5.24
Degradation
estimation by
impulse
characterization.
(a) An impulse of
light (shown
magnified).

(b) Imaged
(degraded)
impulse.

27



Estimating by Modeling

. Atmospheric turbulence model: H (u,v) = e—|<(t12+v2)5’G

High
A . / turbulence
- = - k=0.0025
Negligible/ : Z
turbulence
Low
Mid ~—— turbulence
turbulence rbuience
k=0.001

Estimating by Modeling

- Blurring by linear motion:

T

g(x,¥) = [ FIX=%,(6),y - Yo (®)]dt

0

.
G(u,v)=F(u,v) I o210 (Yo (D] ¢
0

L
= H(u,v) = J'e—JZE[uxo(t)wyo(t)]dt
0

if X, (t)=at/T and y,(t)=0 = H@uw=]eat

T . ;
=——sin(zua)e '
zua

1/10/2014
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Estimating by Modeling
if x,(t)=at/T and y,(t)=bt/T =

H (U,V) =] Lsin [7z(ua + Vb)]e—jzr(uawb)
z(ua+vb)

ab
FIGURE 5.26 (a) Original image. (b) Result of blurring using the function in Eq. (5.6-11)
witha=b=01andT = 1.

Inverse Filtering

The simplest approach to restoration is direct inverse

filtering:
E(u,v) = G(u,v) Even if we know the
T H (u,v) degradation function, we

cannot recover the un-
degraded image

F(u,v)=F(u,v)

If the degradation has zero or very small values, then the ratio
N/H could easily dominate our estimation of F .

One approach to get around the zero or small-value problem

is to limit the filter frequencies to value near the origin.

29
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Inverse Filtering

Degraded
Image

Filtering with H
cut off outside a

Full inverse radius of 40
Filtering —
Filtering with H cut
off outside a radius
of 70
\

Filtering with H
cut off outside a
radius of 85

Minimum Mean Square Error Filtering
(Wiener Filtering)

This approach incorporate both the degradation
function and statistical characteristic of noise into the
restoration process.

Image and noise
are random
process

X O
e2=E[(f - )?]o ©

The objective is to find an estimation for 7 such that minimized e2

30
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Minimum Mean Square Error Filtering

(Wiener Filtering)
& C H'WW)S, @,
F(u,v)= (u,v) fz(u v) G(u,v)
_Sf (u,v)|H (u,V)| +5,(uv) If the noise is zero,
B * then the Wiener Filter
_ H (u,v) SJOROM recuces to the inverse
[H (V)" +S, (u,v)/S, (u,v) filter.
- i
= 1 2| (u V)| G(u,v)
_H(U,V) IHu, V) +S,u,v)/S,(u,v)

S, (u,v)=|N (u,v)|2 = power spectrumof the noise
S, (u,v) = |F(u,v)|2 = power spectrumof the undegraded image

Minimum Mean Square Error Filtering

(Wiener Filtering)
F(u,v) = ! LIC G(u,v)
H(U,V) [H(u,v) +S, u,v)/S, (u,v)

=

. 1 H(u,v)’
Fv) [H(U,V) H(u,v)|" + K]G(u,v)

31



Wiener Filtering

o[

FIGURE 5.28 C¢gmparison of inverse- and Wiener filtering. (a) Result of full inverse/iltering of Fig. 5.25(b).
(b) Radially linpited inverse filter result. (¢) Wiengfr filter result.

Full inverse Radially limited Wiener filtering
filtering inverse filtering (K was chosen interactively)
Wlenef Fllterlng Inverse filtering - Wiener filterin

noise
variance

1/10/2014

32



1/10/2014

Geometric Transformations

¢ Unlike the techniques discussed so far,
geometric transformations modify the spatial
relationships between pixels in an image.

Geometric transformation: RUBBER-SHEET
TRANSFORMATION

Basic Operations:
1. Spatial Transformation

2. Gray-level Interpolation

Spatial Transformations

X'=r(X,Y)
y' =s(x,y)

X"=r(X,y) =CX+C,y+CXy+C,
Yy =5(X,Y) =CX+Csy+C, Xy +Cq

33



Spatial Transformations

AV

N

FIGURE 5.32
Corresponding
tiepoints in two

image segments.

Gray-level Interpolation

Spatial transformation

T

] TR
N

st neighbor to (x, ¥')

/ Neare
v/

]:(_\_‘ 1) Gray-level assignment glx.y)

FIGURE 5.33 Gray-level inlerpolation based on the nearest neighbor conceplt.

v(x,y)=ax'+by' +cx'y' +d

1/10/2014
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Geometric Transformations

Image showing | " N Tic oints ofter
tiepoints ] : R . e Jc0. distortion

Geo. Dist. Image Restored image
using nearest NI

Ge_o. Di?‘.t' Image Restored image
using Bilinear

Interp.

Geometric Transformations

cd

FIGURE 5.35 (a) An image before geometric distortion. (b) Image geometrically dis-
torted using the same parameters as in Fig. 5.34(e). (¢) Difference between (a) and (b).
(d) Geometrically restored image.
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