Lecture 8: 1D and 2D Discrete transforms and introduction to wavelets
Learning Objectives:

e Performing 2D discrete Fourier transforms in Matlab
e Generalized basis functions, hybrid space and “basis” images
e TIntroduction to wavelet transforms

Assignment:
1. Read Chapter 7 of Digital Image Processing Using MATLAB, titled “Wavelets”

I. 2D DFT shift example in Matlab (courtesy Dr. Wieben):

fftshift in 20

Use fftshift for 2D functions
>>smiley?2 = fftshift(smiley);

a Y €
¥ n'a

2D Discrete Fourier Transform

>>Z=fftshift(fft2(fftshift(z)));

z},:lgl?rsé >>figure
>>imshow(real(z)) >>imshow(imag(2),[1)
>>imshow(real(2),[]) >>colorbar
>>colorbar
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DCT case more explicitly:

Recall 2D DCT:

NxN point f(n;,n,) <>2Nx2N pointg(n;,n,) < 2N x 2N point G(k) <> Nx N point C(k)

N, ~IN,-1 T x
f(n,n,)= m n;n;al(k Da, (k,)C (K, K, )cosLl\|1 k,(2n, +1)}cos[mk2(2n2 +1)} 0<n <N, -1,
0<n,<N, -1

and 0 otherwise.  a,,(k,,)= }/ ki, =0
1 1<k,<N-1

N, 1N, -1 .
C(k,,k,) = > Z4f(nl,n2)cos[ k, (2n, +1)}cos{ k,(2n, +1)}, 0<k, <N, -1,
\l 1 2 n=0n,=0 2N2
0<k, <N, -1

and 0 otherwise.

2D DCT of Rose Image (from Lecture 6):

2D Discrete Cosine Transform

G(k,, k,) where 1<k, <2N, k2

1<k, <2N, e o o ole
G(_kv_kz) :G*(kvkz)
Hermetian symmetry of the
Fourier transform.
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Il. Generalized 1D and 2D transforms:
General Requirements of a Basis Set:

1. Review of linear transforms
« Definition of a transform kernel
—Defines a finite set of vectors
—Span an n-dimensional vector space
* The kernel is a set of vectors
—Linearly independent
* Any vector v = C1 V1+Cz Vo+C3 Va+. ..
— Often impose orthogonality
* Inner product < v, v2> =0
—<u,v>=Ui V1 +tUz2 V2 +Uz vz +...
—And orthonormality
* Inner product < vy, vi>=1.

2. Subset includes linear integral transforms:

b
F(a)=[T(a,t)f (t)dt =< f,T (at) >="Inner Product",

where F() is the transform of f(t) with respect tothe kernel
T(x,t),and « is the tranform variable.

Examples: _
+ T(iwt) =e', Fourier Transform

e T(k,x) = x Jn(kx), Hankel Transform
where Jn(kx) are the n' order Bessel functions

«  T(s;t) =e™ Laplace Transform
where the s can in general be complex valued:

Laplace to z-Transform
F(s) :ie’s‘f(t)dt, H(z) = ih(n)z’"

s=o+iw

Im(z)

Non-causal o
unit circle

signals
\%%0 Re(z)

@

Discrete FT

Continuous FT
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2. Discrete forms can be represented as a matrix/array computation:
xisan N bylvectorand Tisan N by N matrix, then
N-1
yi =D tX; ory=Tx
j=0
where thereis a matrix inverse T such that
x=T"y
where T is nonsingular by virtueof forming a linearly
independent basis set that"spans'the vector space.
Kernel T is Orthonormal:
If T is a unitary matrix, then
T =T and TT =1
where the rows of the kernel matrix T form a set of basis
vectors for an N - dimensional vector space:
N-1 .
ZT”T ki =0
i=0
where “*” is the complex conjugate and “t” is the transpose.
Examples:
1DFT:

fisan N by1vectorand W isan N by N matrix, then

1 —i27rnﬁk
Wn,k - \/W e
Wo o Wo N1
W =
WN—l,O WN—l,N—l
where

F=Wfandf =W''F
where f and F are N by 1signal and spectrumvectors.
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o Fisan N by N matrix and W is thesame N by N matrix, where
1 “i2 K
W, = We
WO 0 WO,N 1
W =
WN-l,O WN-l,N-l
only now,

G=WFW and F =W 'GW ™
where F is theimage matrix and G is the spectrummatrix.

Separability and “hybrid space”:

if 3(i,k,m,n)isseparable then

3@, k,m,n) =T, (i,m)T_(k,n)

carried out in a row - wise operation followed by
a column - wise operation.

For 3(i,k,m,n) =T (i,m)T (k,n)

Gpn = fT (i, m){% F Tk, n)} ~G=TFT

and the inverse transformis
F — T-lGT -1 — T*tGT *t Hybrld DFT Space (DFT I’OW-WiSG)I

meviewer

EEEEE ROIDatR

Display Image | Select RO |

Rose image Example:

qure 2 8 [=] B3

el Fig
= e = = surhze | spiny | 1 M
sHaE K RaQAMe ¥ 08| 8O e —
I miP [ RGE color oo (e
Imaginary Data loray -
T~ Invert [~ Negative 213 _I

@
I Leck Golormap | | £y i
06
Global

rrrrrrr

-1500 -1000 -500 o 500 1000 1500 2000 2500 3000




Lecture 8: 1D and 2D Discrete transforms and introduction to wavelets

Woo v Wonag Woo - W*N-l,O
wel . ) .
Wyao = Wyana W*O,N-l W*N-l,N-l
only now,
B=WW"
is a set of basis 2D arrayswith o(n;,n,) and O otherwise.
In conjugate image space, these form the"basis images"” of the 2D DFT.

Case | Case |l

k-space: Image Space: k-space: Image Space:

Z // \ 7
K <[§T> Ky —

Bernstein MA, Fain SB, and Riederer SJ, JMRI 14: 270-280 (2001)

Matrix of basis images of the Discrete Cosine Transform:
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Example: The Gabor transform:

Daugman, 2000, University of Cambridge, The Computer Laboratory, Cambridge CB2 3QG, U.K.,

www.CL.cam.ac.uk/users/jgd1000/

Phase-Cuadrant Demodulation Code

[0, 0] [1.0]

Figure 2: The phase demodulation process used to
encode iris patterns. Local regions of an iris are pro-
Jected (Eqt 2) onto quadrature 2D Gabor wavelets,
generating complex-valued coefficients whose real
and imaginary parts specify the coordinates of a pha-
sor in the complex plane. The angle of each phasor
is quantized to one of the four quadrants, setting two
bits of phase information. This process is repeated all
across the iris with many wavelet sizes, frequencies,
and orientations, to extract 2,048 bits,

Decision Environment for Iris Recognition: Mon-ldeal Imaging
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Figure 9 The Decision Environment for iris recog-
nition under relatively unfavourable conditions, using
images acquired at different distances, and by differ-
ent optical platforms.

2D Receptive Fisld

2D Gabor Functien

Difference

Figure 5. Top row: ilustrations of empirical 2-D recaptive flaid proflies measured by J.P.
Joaes and L.A. Palmer (personal communication) in simple cells of the cad vieual cortex. Middle
row: best-Rtting 3-D Gabor elementary function for each neuron, described by Eqt. [10]. Bottom
row: residual error of the 84, indistinguishable frem random arror ia the Obi-aquared sense for 97%
of the cells studied.
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Haar Wavelets

Hr

Symmetric separable unitary transform
— Haar functions form the basis
Haar functions vary in both scale (width) and position

— Whereas FT basis functions vary only in frequency

1
hO(X):_N
1 2p/2 Z—_plsx<q;7§é
—_—_J_opl2 45  _a
h (x) N 2 0

0 otherwise
Let x=j/N for j=0,1,..., N -1then we get
a set of odd rectangular pulsepairs, except for k = 0.
Defined on [0,1] with theinteger 0 < k < N -1specified
byk=2"+q-1.
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First step of the 1D Wavelet transform is the Haar Transform: ¢ = H rs
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