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2D Sampling

Goal: Represent a 2D function by a finite set of points.

- particularly useful to analysis w/ computer
operations.

Points are sampled every X in x, every Y iny.

How will the sampled function appear in the spatial
frequency domain?



Two Dimensional Sampling: Sampled function in freq. domain

How will the sampled function appear in the spatial frequency domain?

G(u,v) = Fla(x, y)}
= XY - HIUuX) - HI(VY) **G(u,v)

Since

XY -comb(uX)-comb(vY) = i i S(U _§,V_$j

" o0 Q0 n m
G(u,v) = nzz_loomzoo(;(u—y,v—vj

The,result: Replicated G(u,v), or “islands” every 1/X in u, and 1/Y inv.



Example

Let g(x,y) =A(X/16)A(y/16) Here we show its continuous
be a continuous function transform G(u,v)

Now sampling the function gives the
following in the space domain

A il 2l X
g(x,y) = III(XJIII(YJQ(X, Y)
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N=-00 M =-00



Fourier Representation of a
Sampled Jmage

1Y

Sampling the image in the space domain causes
replication in the frequency domain
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Two Dimensional Sampling: Restoration of original function
H(u,v) =11(uX)-TI(vY) will filter out unwanted islands.

Let’s consider this in the image domain.

a(x, y)**h(x,y)

=_|||(ij( )g(x,y):**h(X,Y)

= XY i ig(nx, mY)-d(x—nX,y—mY)

N=—00 M =—00

Rt
——SINC| — [SINC| —
XY X Y
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Two Dimensional Sampling: Restoration of original function(2)
@(X y)**h(x y)
= z Z g(nX, mY)- smc{ (x—nX)}-sinc[%(y—mY)}

N=—00 M=—00

Each sample serves as a weighting for a 2D sinc function.

Nyquist/Shannon Theory:
We must sample at twice the highest frequency in x and in y to
reconstruct the original signal.

1

(No frequency components in original signal can be > 557 or > -3 )
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Two Dimensional Sampling: Example

80 mm Field of View (FOV)
256 pixels

Sampling interval = 80/256 = .3125 mm/pixel

Sampling rate = 1/sampling interval = 3.2 cycles/mm or pixels/mm
Unaliased for = 1.6 cycles/mm or line pairs/mm
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Example in spatial and frequency domain

Sampling process is Multiplication of infinite train of
impulses Il(x/Ax) with f(x)
or convolution of lll(uAx ) with F(s)— Replication of F(s)

In time domain

FT of Shah function By similarity theorem




Example in Time or Spatial domain




Sampling theorem

A function sampled at uniform spacing can be
recovered if

Aliasing: = overlap of replicated spectra




Properties of Sampling |

1) Truncation in Time Domain:
Truncation of f(x) to finite duration T =
Multiplying f(x) by Rect pulse of T =
Convolving the spectrum with infinite sinx/x

T =N At (Truncation window)
1/T = 1/NAt=As spectrum sample spacing (in DFT)




Since Truncation Is:

Multiply f(t) with window

or convolve F(s) with narrow sin(x)/x
Therefore, it extends frequency range (to infinite)

>

Spectrum of truncation function is always infinite
and Truncation destroy bond limitedness & produce alias.

This causes Unavoidable Aliasing




Properties of sampling I

2) There is a Sampling Aperture over which the signal is
averaged at each sample point before applying Shah function

By convolve f(t) with aperture 11‘[(1)
T T

or multiply F(s) with

This reduces high frequency of signal




Properties of sampling 11|

3) Since Sampling is multiplication of shah function
with continues function Or convolution of F(s) with

G(s) =dII(zs) * F(s)

Convolution of function with an impulse =
copy of that function

===p Replicate F(s) every 1
r




Properties of sampling 1V

4) Interpolation or Recovering original function (D/A)

To recover original function, we should eliminate the
replicas of F(s) and keep one.

Either Truncation in Freqg should be done.

— G(S)H(z—) = F(s)

Or mm=p convolving sampled g(x) with interpolation sinc

h \/

/(O
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Review of Digitizing Parameters

Depend on digitizing equipment:

Truncation window ===» Max F.O.V of image
Sampling aperture s=m) Sensitivity of scanning spot
Sampling spacing ===)» Spot diameter (adjustable)
Interpolation function e==)> Displaying spot




Review of Sampling Parameters

To have good spectra resolution (small As) and
minimum aliasing, parameters N, T and At defined.

At as small as possible
small As
T as long as possible/

\compressed FT

To control aliasing:
- Bigger sampling aperture

- Smaller sampling spacing (over same filter)
- Adjust image freq. S,, at most S =1/2At




Anti aliasing Filter:

1) Using rectangular aperture twice spacing
Energy at frequency above S,>1/2At is attenuated.
Original image freq. F(s) from 1/At reduce to 1/2At




Anti aliasing Filter:

2) Using triangular aperture = 4 time of spacing
— Dies of frequency above 1/2At




Examples of whole Sampling Process on
a Band limited Signal

Original signal:
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Truncating the signal:
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Convolving signal with sampling aperture:
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Sampling the signal:
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Interpolating the sample S|gnal (to recover original)
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Discrete Fourier Transform

g(x) Is a function of value for —co<x <00
We can only examine g(x) over a limited time frame, O<x<L

Assume the spectrum of g(x) is approximately bandlimited;
no frequencies > B Hz.

Note: this Is an approximation; a function can not be both time-
limited and bandlimited.

f(x)

= ) B 1 B
1
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Sampling and Frequency Resolution

We will sample at 2B samples/second to meet the Nyquist rate.

L
N = . =2BL We sample N points.
2B

frequency range = 2B = 1 = frequency resolution
# of samples N L

31-01-1387
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Transform of the Sampled Function
i N-L i
n
n=0
F(u)= > F(u-2nB)
N=—00

Another expression for IA:(u) comes from F {f(x)}

N-1 ; ] ]
=3 et op | Flo{x g5 |1 s e
-2B \ 2B 2B CO
1

functions
A N_ —|27Tnu
Fuy=> f(n) e 2B where f(n) = L f(2)
A n=0
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Transform of the Sampled Function (2)

nu

|A:(u) - nz_c;f(n)e_iOZE.ZB where T(N) = 55 ( nB)

To be computationally feasible, we can calculate IA:(u)
at only a finite set of points.

Since f(x) Is limited to interval O<x<L |,
F(u) can be sampled every Hz.
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Discrete Fourier Transform

F(R)=F(m) = f(ne ™

2BL = N = number of samples

Discrete Fourier Transform (DFT):

F(m) = ff(n)e 28 _ Zf(n)e

nm

N

Number of samples in x domain
= number of samples in frequency domain.

31-01-1387
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Periodicity of the Discrete Fourier Transform

N-1 Sjgp M N 2z
DFT: F(m) = Zf(n)e 2BL _ Zf(n)e N
n=0 n=0

F(m) repeats periodically with period N
1) Sampling a continuous function in the frequency domain [F(u) ->f(n)]causes
replication of f(n) ( example coming in homework)

2) By convention, the DFT computes values for m= 0 to N-1

m=20 DC component
Otoll—1 positive frequencies

% +1to N -1 negative frequencies
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Properties of the Discrete Fourier Transform
Let f(n) — F(m)
L Linearity If f(x) ©F(u) and g(x) © G(u)

af(x) +bg(X) — aF(u)+bG(u)

2. Shifting
o km
D.ET{f (n-K)}—>F(m)e N

Example : if k=1——there Is a 27 shift as
m varies from 0 to N-1
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Inverse Discrete Fourier Transform

If f(n) — F(m)
nm

D.F.T.HF(m) }zﬁ%F(m)-e_i% N' — f(n)

Why the 1/N ? Let’s take a look at an example
f(n)={1 00000 0 0} N = 8 = number of samples.

+I- 27zDIII

F(m) = Zf -

:1+O+O+O+O+O+O+O

-1 '
for all values of m continued. ..
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Inverse Discrete Fourier Transform (continued)

Now Inverse,

For n=0,
kernel is simple

For other values
of n, this identity
will help

31-01-1387

N-1 i nm
f(n) =& > F(m) e
m=0

N-1 _ am
f(n) =42 F(m) -
m=0

f(0)=21-8=1

N-1 ] am
JOREDICITR
n=0

ZN—l }_1—r'\'
0 r 1-—r

1_ e+i-27z-%
f(n) = ﬁ[ ey ]
1—e N

f(n)=0 form= 0, N, 2N
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