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2D Sampling

Goal: Represent a 2D function by a finite set of points.

- particularly useful to analysis w/ computer 

operations.

Points are sampled every X in x, every Y in y. 

How will the sampled function appear in the spatial 

frequency domain?
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Two Dimensional Sampling: Sampled function in freq. domain

How will the sampled function appear in the spatial frequency domain?
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The result: Replicated G(u,v), or “islands” every 1/X in u, and 1/Y in v.
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Example 

Let g(x,y) =L(x/16)L(y/16)

be a continuous function 

Here we show its continuous 

transform G(u,v)
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Now sampling the function gives the 

following in the space domain
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v

u

Fourier Representation of a 

Sampled Image 

1/X

1/Y

Sampling the image in the space domain causes 

replication in the frequency domain
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Two Dimensional Sampling: Restoration of original function

will filter out unwanted islands.Y)(X)(),(H vuvu 

Let’s consider this in the image domain.
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Two Dimensional Sampling: Restoration of original function(2)

Each sample serves as a weighting for a 2D sinc function.
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Nyquist/Shannon Theory: 

We must sample at twice the highest frequency in x and in y to 

reconstruct the original signal. 

(No frequency components in original signal can be 
X2
1 or

Y2
1 )
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Two Dimensional Sampling: Example

80 mm Field of View (FOV)

256 pixels

Sampling interval = 80/256 = .3125 mm/pixel

Sampling rate = 1/sampling interval = 3.2 cycles/mm or pixels/mm

Unaliased for ± 1.6 cycles/mm or line pairs/mm
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FT of Shah function By similarity theorem
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Sampling process is Multiplication of infinite train of 

impulses III(x/∆x) with f(x)

or convolution of III(u∆x ) with F(s)→ Replication of F(s)



31-01-1387 931-01-1387 9

Example in Time or Spatial domain
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Sampling theorem

A function sampled at uniform spacing can be

recovered if
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Aliasing: = overlap of replicated spectra
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1) Truncation in Time Domain:

Truncation of f(x) to finite duration T =

Multiplying f(x) by Rect pulse of T = 

Convolving the spectrum with infinite sinx/x

Properties of Sampling I

T = N Δt  (Truncation window) 

1/T = 1/NΔt= Δs        spectrum sample spacing (in DFT)
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Spectrum of truncation function is always infinite 

and Truncation destroy bond limitedness & produce alias.

This causes Unavoidable Aliasing

Since Truncation is:

Multiply f(t) with window

or convolve F(s) with narrow sin(x)/x

Therefore, it extends frequency range (to infinite)
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2) There is a Sampling Aperture over which the signal is

averaged at each sample point before applying Shah function

By convolve f(t) with aperture

or multiply F(s) with

This reduces high frequency of signal
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Properties of sampling II
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)()()( sFsIIIsG  

3) Since Sampling is multiplication of shah function

with continues function Or convolution of F(s) with

Convolution of function with an impulse =

copy of that function

Replicate F(s) every


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Properties of sampling III
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4) Interpolation or Recovering original function (D/A)
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To recover original function, we should eliminate the

replicas of F(s) and keep one.

Either Truncation in Freq should be done.

Properties of sampling IV
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Review of Digitizing Parameters

Depend on digitizing equipment:

Truncation window Max F.O.V of image

Sampling aperture Sensitivity of scanning spot

Sampling spacing Spot diameter (adjustable)

Interpolation function Displaying spot
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To have good spectra resolution (small Δs) and

minimum aliasing, parameters N , T and Δt defined.

Review of Sampling Parameters 

Δt as small as possible

small Δs

T as long as possible

compressed FT

To control aliasing:
- Bigger sampling aperture

- Smaller sampling spacing (over same filter)

- Adjust image freq. Sm at most Sm=1/2Δt
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Anti aliasing Filter:

1) Using rectangular aperture twice spacing

Energy at frequency above S0>1/2Δt is attenuated.

Original image freq. F(s) from 1/Δt reduce to 1/2Δt



31-01-1387 2031-01-1387 20

Anti aliasing Filter:

2) Using triangular aperture = 4 time of spacing

Dies of frequency above 1/2Δt
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Examples of whole Sampling Process on 

a Band limited Signal

Original signal:
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Truncating the signal:
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Convolving signal with sampling aperture:
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Sampling the signal:
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Interpolating the sample signal (to recover original)
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Discrete Fourier Transform

g(x) is a function of value for  x

We can only examine g(x) over a limited time frame, L0  x

Assume the spectrum of g(x) is approximately bandlimited; 

no frequencies > B Hz.

Note: this is an approximation; a function can not be both time-

limited and bandlimited.
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Sampling and Frequency Resolution

We will sample at 2B samples/second to meet the Nyquist rate.
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Transform of the Sampled Function

Another expression for          comes from
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Transform of the Sampled Function (2)

To be computationally feasible, we can calculate           
at only a finite set of points.

Since f(x) is limited to interval   0<x<L  ,

can be sampled every     Hz.
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Discrete Fourier Transform

Discrete Fourier Transform (DFT):

 N2BL number of samples

Number of samples in x domain

= number of samples in frequency domain.
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Periodicity of the Discrete Fourier Transform

F(m) repeats periodically with period N

1) Sampling a continuous function in the frequency domain [F(u) ->f(n)]causes 

replication of f(n) ( example coming in homework)

2) By convention,  the DFT computes values for m= 0 to N-1

DFT:
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Properties of the Discrete Fourier Transform
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1. Linearity

2. Shifting

Let f(n)          F(m)

Example : if k=1 there is a 2 shift as 

m varies from 0 to N-1

bG(u)aF(u)bg(x)af(x) 

If f(x) nF(u) and g(x) n G(u)
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If   f(n)        F(m)

Inverse Discrete Fourier Transform
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Why the 1/N ?  Let’s take a look at an example
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for all values of m
continued...

N = 8 = number of samples.



31-01-1387 34

Now inverse,

Inverse Discrete Fourier Transform (continued)
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For n= 0,

kernel is simple

For other values 

of n, this identity

will help
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