
Theory of Reconstruction



Schematic Representation o f the Scanning Geometry 

of a CT System

What are inside the gantry?



2 % attenuation change detectable in film

0.2 % change in attenuation coefficient
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CT, like X-ray measure line integrals
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Radon Transform 1917

Central Section Theorem - Bracewell

The transform of each projection forms a line, at that 

angle, in the 2D FT of f(x,y)

f(x,y)

g(R)

g(R) = ∫ f(x,y) dy

We will skip the Algebraic 

Reconstruction Technique



{f(x,y)} => F (u,v) = ∫∫ f(x,y) e -i 2π (ux +vy) dx dy

F(u,0) = ∫ [ ∫ f(x,y) dy] e -i 2π ux dx

So F(u,0) is the Fourier transform of the projection formed 

from line integrals along the y direction.
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First, let’s think of our experience on the meaning

of F(u,0) in the Fourier transform. 



Incident x-rays pass through the object f(x,y) from upper left to 

lower right at the angle 90 + .  For each point R, a different line 

integral describes the result on the function g (R).  g (R) is 

measured by an array of detectors or a moving detector.  

The thick line (in next slice) is described by

x cos  + y sin  = R

I have just drawn one thick line to show one line integral, but the 

diagram is general and pertains to any value of R.



The 1D Fourier Transform of a  projection at angle  forms a line in 

the 2D Fourier space of the image at the same angle.
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1D Fourier Transforms of all projections at angles =1-360 forms a 

2D Fourier space of the image.



The projection g (R) can thus be calculated as a set of line 

integrals, each at a unique R.

g (R) = ∫ ∫ f(x,y)  (x cos  + y sin  - R) dx dy

2π  ∞

g (R) = ∫    ∫ f(r, f)  (r cos ( - f ) - R) r dr df
0     0

In the second equation, we have translated to polar coordinates.

Again g (R) is a 1D function of R. 



In CT, the recon algorithm calculates the  of each pixel.

x-ray = No e -∫  dz

recorder intensity

For each point along a projection g(R), the detector calculates a 

line integral.

n0=Incoming photon density

(x,y)

Detector

ith line integral

Ni

X-ray Source

of area A



Ni = n0 A exp ∫i - dl = N0 exp ∫i - dl

N0 = n0 A

where A is area of detector and 

The calculated line integral is ∫i  dl = ln (N0/Ni)

Mean = ≈ ln (N0/Ni)

2(measured variance) ≈ 1/Ni

Now we use these line integrals to form the projections g(R).  These 

projections are processed with convolution back projection to make 

the image.

SNR = C  / 



M

(x,y) = ∑ g(R) * c(R) * (R-R’)  ∆
i = 1

add projections      convolution    back projection

Where:

R’ = r cos ( - f )

∆ = π/M (usually)

π

  = M/π ∫  g(R) * c(R)* (R-R’) d
0

Discrete Backprojection over M projections



Recall  = M/π ∫  g(R) * c(R)* (R-R') d

H(u) = (M/π)  (C(u) / |u|) is system impulse response of CT 

system

C(u) is the convolution filter that compensates for the 

1/|u| weighting from the back projection operation

Let’s get a gain (DC) of 1.  Find a C(u) to do this.

We can consider C(u) = |u| a rect(u/ 2u0).  

Find constant a

If we set H(0) = 1, DC gain is 1.

H(0) = (M/π) a   a = π/M

Therefore, C(u) = (π/M) |u|  rect(p/ 2r0). 

C(u)

u0

This makes sense – if we increase the number of angles M,

we should attenuate  the filter gain to get the same gain.



At this point, we have selected a filter for the convolution-back 

projection algorithm.  It will not change the mean value of the CT 

image.  So we just have to study the noise now.  

The noise in each line integral is due to differing numbers of photons.  

The processes creating the difference are independent.

- different section of the tube, body paths, detector



Recall

π

 = M/π ∫  g(R) * c(R)* (R-R’) d
0

Then the variance at any pixel

π


2 = M/π   ∫  g

2(R)(R) * [c2(R)] d
0

variance of any one detector measurement

Assume with n = average number of transmitted

photons per unit beam width

and h = width of beam

hn
g
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convolution



π


2 = (M/π) (1/ (nh)) ∫   d ∫  c2 (R) dR  =  M/nh  ∫  c2 (R) dR 

0

Easier to evaluate in frequency domain. Using Parseval’s Rule
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The cutoff for our filter C(u) will be matched to the detector width w.

Let’s let u0 = K/w where K is a constant

Combine all the constants

n was defined over a continuous projection

Let N = nA = nwh = average number of photons per detector element.

2/3whMnCKSNR 



In X-ray, SNR  √N

For CT, there is an additional penalty.  To see this, cut w in ½.  

What happens to SNR?

Why Due to convolution operation

wMNCKSNR 


