
Assumption:  

No resolution loss yet due to source.

Each ray independent of neighbors

For Parallel Rays: Id (x,y) = I0 e -∫ µ (x,y,z) dz

Limitations

1)Finite Source produces rays that aren’t parallel 

Rays originate from a point source

2) Finite Detector

3) Distortion due to point source geometry

4) Resolution loss due to finite source size ( not a point)

Photon density at Idetector due to Source obliquity



Id (xd,yd) = Ii (xd,yd) exp [ -∫µ0 (x,y,z) dr

Photon density at Idetector

First, what if no object?

• (xd,yd) 
dr

 (x,y,z)
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X-ray Source 



For small solid angles  Ω ≈ area/distance2 = a (cos )/r2

is fraction of radiation  from the source covering a full sphere 

subtends 4π steradians, intercepted by Detector 

N photons emitted by source

K energy per photon

Divide by area a to normalize 

to detector area



d

Unit area a
Unit area on sphere is smaller than

area it subtends on detector.  So for

unit area on detector, area on sphere

reduces by cos().

X-ray Source 

Detector Plane

Subtended area=acos()
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Normalize to Id (0,0) = I0

Now rewriting Ii in terms of I0 

gives, 

But  

So,

Id= Io cos3 ()
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Source Intensity on Detector Coordinates 

Id = Io cos3 
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Practical Example

• For a 40 cm FOV with x-ray source 1 m 

away, how much amplitude modulation will 

we have due to source obliquity?
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X-ray path is longer off axis

Photon density change due to object obliquity
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An incremental path of the x-ray, dr, can be described by 

its x, y, and z components. 



Each point in the body (x,y) can be defined in terms of the 

detector coordinates it will be imaged at. 

Let’s make intensity expression parametric in z.

Then, rewriting an earlier description in terms of the detector 

plane. z/d describes minification to get from detector plane to 

object. 

Id (xd,yd) = Ii exp [ - ∫ µo ((xd/d)z, (yd/d)z, z) dz]
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Putting it all together gives,

Id = Io /(((1 + rd
2)/d2)3/2) exp [ - ∫ µo ((xd/d)z, (yd/d)z, z) dz]

source obliquity object obliquity
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Object µ (x,y,z) = µo rect ((z - zo)/L)

Object is not a function of x or y, just z.

Id (xd,yd) = Ii exp [ - µo L]

If we assume detector is entirely in the near axis, rd
2 << d2

Then, simplification results,

Id = Io e -µ0L
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For µo (x,y,z) = µo P (y/L) P((z - z0)/w)

Find the intensity on the detector plane

Three cases:

1. Blue Line: X-Ray goes through entire object

2. Red  Line: X-ray misses object completely

3. Orange Line:  X-ray partially goes through object  

x out of plane

Infinite in x

Id (xd,yd) = Ii exp [ - ∫ µo ((xd/d)z, (yd/d)z, z) dz]2
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Id (xd,yd) = Ii exp [ - ∫ µo ((xd/d)z, (yd/d)z, z) dz]

For the blue line, we don’t have to worry that the path 

length through the object will increase as rd increases.  

That is taken care of by the obliquity term 
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For the red path, Id (xd,yd) = Ii

For the orange path,  the obliquity term will still help

describe the lengthened path.

But we need to know the limits in z to integrate



If we think of thin planes along z, each plane will form a 

rect in yd of width dL/z. Instead of seeing this as a P in y, 

let’s mathematically consider it as a P in z that varies in 

width according to the detector coordinate yd.  Then we 

have integration only in the variable z.  The P define 

limits of integration

µo (x,y,z) = µo P (y/L) P((z - z0)/w)
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1) X-ray misses object completely

As yd grows,first P contracts and no overlap exists between 

the P ,

functions.  No overlap case when 

dL/2yd   < z0 – w/2

|yd | > dL/(2 zo -w )

Id = Ii

-dL/2|yd| dL/2|yd|
z0z0 - w/2 z0 + w/2

P  in y dimension P  in z dimension

z



1) X-ray goes completely through object

As yd  0, x-ray goes completely through object

This is true for dL/2yd   > z0 + w/2

|yd |< dL/ (2 zo + w)

Id = Ii exp {-µo  w}

-dL/2|yd| dL/2|yd|
z0z0 - w/2 z0 + w/2

P  in y dimension P  in z dimension
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-dL/2|yd| dL/2|yd|
z0z0 - w/2 z0 + w/2

P  in y dimension P  in z dimension

z

3) Partial overlap case.  Picture above gives the limits of

integration.
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3) Id =

Ii exp {-µo                              ((dL/ 2|yd | ) + w/2 - zo)}2
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X-rays go entirely through object

X-rays miss object

X-rays partially

travel through object

The above diagram ignores effects of source obliquity and the factor

in the exponential How would curve look differently if we accounted for both of these?
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See object as an array of planes

µ (x,y,z) =  (x,y)  (z - z0)

Analysis simplifies since only one z plane

where M = d/z0 represents object magnification

If we ignore obliquity,

Or in terms of the notation for transmission, t,

Note:  No resolution loss yet.  Point remains a point.
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