
Extended (Finite) Sources 



Id (xd,yd) = Ii exp [ - ∫ µo ((xd/d)z, (yd/d)z, z) dz]

Id (xd,yd) = Ii exp [ - ∫ µo (xd/M, (yd/M, z) dz]

where M = d/z

and Ii = Io/ (1 + (rd
2/d)2)3/2
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X-Ray with a Point Source

Collimated X-ray

Id (xd,yd) = I0 exp [ - ∫ µo (x,y,z) dz]



Pinhole 
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Detector will show

size of source

Place pinhole between source and detector. This pinhole Reproduce an

inverted image of source magnified by (d-z)/z=m.

The point response h(xd,yd) for the pinhole for a source distribution s(xs,ys) is:
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The total detected Intensity (image) of a transparent object (hole) 

having transmission t(x,y) = exp [ -µ (x,y)  (z - zo)] imaged by a 

finite x-ray source, s(x,y) is obtained by convolution process: 

The detected image will be the convolution of a Magnified object 

and a magnified source.

In frequency domain: 
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In the Fourier domain:

Id (u,v) = KM2m2 T (Mu, Mv) S (mu,mv)

Object is magnified by M=d/z

Source magnification causes distortion:

Low m

Large m

small m

u

Id (u,v)

Curves show S(mu,mv) for

a large m and a small m
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1) First, no object. Differential

Intensity at detector plane:

dIi (xd, yd) = dIo cos3 

dIo = s(xs,ys) dxs dys/(4πd2)

Source units ((N/mm2)/min)
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2) Now let’s put in an object (for object obliquity).  

What is the output of xd, yd given a source at xs, ys?

We call this the differential detected image.

dId (xd, yd, xs, ys) = dIi exp [ - ∫ µ (x,y,z) ds]

As before, we will evaluate ds in terms of xd, yd

in the detector plane.
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Now finding expressions for x  and y 

paths in terms of z.

We want to describe what is happening 

at some general location x,y in the body.

By similar triangles:  
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Again, we will build a parametric equation
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Recalling that 

We can have the result at an arbitrary detector point and arbitrary 

source point.

To get the entire result Id (xd, yd), we add up the response from all 

the source points by integrating over the source. 

Id (xd, yd) = ∫ ∫ dId(xd, yd, xs, ys)=
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Let’s make some assumptions and simplify

1) Ignore both obliquity factors

2) Assume thin planar object at z=zo µ =  (x,y)  (z – zo)

To define this expression in a  space invariant convolution form, let:  

And by considering a magnified source and Magnified object, we 

can get space invariance as:

or:
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Let’s make above expression linear by replacing:

Then:

Here the collection efficiency of pinhole is divided by the ratio of 

image and source area i.e. m2
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Consider 10mm object 1mm source

z m M Image 

size

Blur

d 0 1 10mm 0

d/2 1 2 20mm 1mm

d/10 9 10 100mm 9mm



What about volumetric objects?  Ignoring obliquity, for thin plane 

we have:

Let’s model object as an array of planes  (||||||)  (x,y)

Therefore: µ = ∑i i (x,y)  (z - zi) 

where m = m(z) or mi = - (d - zi)/ zi and Mi= d/zi
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term is still not linear however

Let’s assume the solid object as:       ∫ µ dz = ∑ i << 1

Then we can linearize the exponent  exp (- ∑ i) = 1 - ∑ I

Id ≈ Ii - ∑i 1/(4πd2mi
2) s(xd/mi, yd/mi) **i (xd/Mi, yd/Mi) 

where Ii = 1/(4πd2) ∫ ∫ s(xs,ys) dxs dys

The output is seen as incident radiation minus a summation of 

convolutions.  Good math, but poor approximation.  This is true only 

in very thin regions of the body
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Reasonable approximation (except at boundaries µ approaches 0)
Where µ of water is considered as mean µ, and departure from that is µΔ

µ = µmean + µD

exp [ -∫(µm + µ∆) dz = exp [ - ∫µm dz ] exp [ - ∫µ∆ dz ]

Since ∫µ∆dz<<1 We can linearize with the approximation

≈[ exp -∫µm dz ] [ 1 - ∫µ∆ dz ]   

Since µm is a constant, the first exponential term is a constant.
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Since µm is a constant, we can make the approximation:

The remaining integration can now be seen as a series of thin planes.

Id  = [exp - ∫ µm  (xd/M, yd/M, z) dz ] •

[ Ii - ∑ 1/(4πd2mi
2) s (xd/mi, yd/mi) ** ∆i (xd/Mi, yd/Mi) 

Id = Twater (xd, yd) [ Ii - ∑ 1/(4πd2mi
2) 

• s ((xd/mi), (yd/mi)) ** ∆i (xd/Mi, yd/Mi)]

where Twater = [exp - ∫ µm  (xd/M, yd/M, z) dz ] 

and Ii = 1/(4πd2) ∫ ∫ s(xs,ys) dxs dys

Thus, we have justified viewing the body as an array of planes.
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