
Effects of Tilted Source (Anode Angle)

Source magnification in xd function of z

Source magnification in y dependent on yd and z

We will skip the mathematical development on this section



s (xs, ys, zs)

Consider a 3 x 3 array of pinholes
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t(x,y) above can be considered

a lead plate with two pinholes punched 

into it. 

3 x 3 array of circular pinholes to left 

shows how source is contracted in y for

positive y detector positions and 

enlarged for negative detector locations.
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Let’s allow the magnification to be different on each axis. 

The pinhole models an object, d(x’, y’,z).

M’x’ + m’ xs,

M’y’ + m’ ys

The diagram above merely shows how one point in the source, the 

pinhole, and the detector are related by geometry.

Here we use a M’ to allow for magnification of the pinhole, and m’ to 

allow for magnification of the source
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We will consider the impulse response using a pinhole at x’, y’.

where  is a collection efficiency for the pinhole: =Ω/4π d2
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If tan () = a,

then the source position z’ = a ys

By geometry,   object magnification is

M’ = (d - a ys)/(z - a ys)

Source magnification is

m’ = - ((d - a ys) - (z - a ys)) / (z - a ys)

m’ = - (d - z)/ (z - a ys)
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Recall xd = M’x’ + m’xs

yd = M’y’ + m’ ys

Mx = xd /x’ = M’ = (d - a ys)/(z - a ys) ≈ d/z 

since for practical arrangements d, z >> ays

Typical dimensions: z, d ~ 1 m, ys ~ 1mm

Similarly My = yd /y’ ≈ d/z 

mx = xd /xs = m’ ≈ - (d-z)/z = m 

my = yd /ys

This is more interesting derivative since both M’ and m’ are 

functions of ys

my = yd /ys = (M’ y’)/ ys +  (m’ ys)/ ys



From previous slide,

M’ = (d - a ys)/(z - a ys) and m’ = - (d - z)/ (z - a ys)

To  find :       my = yd /ys = (M’ y’)/ ys +  (m’ ys)/ ys

my = [((z- a ys)(- a) - (d - a ys)(- a)] y’)/(z - a ys)
2

+ -(d-z) • [(z- a ys) - ys(- a)]/ (z- ays)
2

= (- a[z-d] y’ - (d -z) z)/ (z- ays)
2 = - (d - z) (z - ay’)/ ((z- ays)

2

my = - (d-z) (z - ay’)/ z2 = m (1- (ay’/z))

Using this relationship and ignoring obliquity,

How does magnification change with object position?
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Since system is linear, we can write a superposition integral.

Id (xd, yd) = ∫ ∫ h ((xd, yd, x’, y’) t(x’,y’) dx’ dy’ =
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For developing space-invariance, let’s consider a magnified object

Let 

Not a space-invariant system since 

1- (ay’’/Mz) varies slowly with y’’ or y’

But it doesn’t vary much in a region of an object.
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Consider a horizontal strip across the detector centered at 

For this region, ay’’ = aMy’ = ayd

where Mz = d

y’ Let y’d = My’
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Here dy is a constant over a region in the detector during the 

convolution.



At ay’= z, source width goes to 0 in y.   We call this the  “heel effect”
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In the frequency domain, 



Let’s consider object motion with constant velocity in the x direction 

over the imaging time T at velocity v

Over time T, the object size will change position in the detector 

plane by MvT

vT MvT



Blur in x direction gets minimized as T decreases to 0
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The impulse response due to movement  in x is 

Notice that there is no degradation in y, as we expected.

The complete impulse response is given below( a planar source

parallel to the detector is used here for simplicity).



Assume a L x L source parallel to detector

Write energy density Es  as a power integrated over time

p(xs, ys) is regional source power density (it is limited by tungsten melting  point). 

Set p (xs, ys) = Pmax.          Operating tube at maximum power available. 

T is the time beam is ON

Es = ∫∫∫ p (xs, ys) dxs dys dt=PmaxTL2 , then

If L increases, source grows, then T can decreases.

Complete Response function 

for Rectangle Source and 

movement MvT in x direction:
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How to minimize Motion blurring



We have extension of the impulse response in the x direction as:

X = |m|L + (MvEs/ Pmax L2)
by the convolution of two rectangles, due to source blurring and motion

We could choose to minimize several criteria.  Area, for example.  We 

will simply minimize X now with respect to L.

Corresponding Exposure Time at Optimal L

If v = 0,   then L = 0 T = ∞ no source blurring

If |m| = 0, object is on detector L ∞ T = 0
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