
In electromagnetic systems, the energy per photon = hn.

In communication systems, noise can be either quantum or additive

from the measurement system ( receiver, etc). 

The additive noise power is 4kTB,
k is the Boltzman constant

T is the absolute temperature

B is the bandwidth of the system.

When making a measurement (e.g. measuring voltage in a receiver), 

noise energy per unit time 1/B can be written as 4kT.

comes from the standard deviation of the number of photons per 

time element.
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When the frequency n<< GHz, 4kT >> hn

In the X-ray region where frequencies are on the order of 1019:

hv >> 4kT

X-ray is quantum limited due to the discrete number of photons per 

pixel.  

We need to know the mean and variance of the random process that 

generate x-ray photons, absorb them, and record them.
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SNR in x-ray systems

Recall: h = 6.63x10-34 Js

k = 1.38x10-23 J/K



Discrete-Quantum Nature of EM 

radiation detection

• Detector does not continuesly absorb energy

• But, absorb energy in increments of hn

• Therefore, the output of detector cannot be 

smooth

• But also exhibit Fluctuations known as 

quantum noise, or Poisson noise (as definition 

of Poisson distribution, as we see later)



Noise in x-ray system

• hn is so large for x-rays due to necessity of 

radiation dose to patient, therefore: 

– 1) Small number of quanta is probable to be detected

– 2) Large number of photons is required for proper 

density on Film

• 107 x-ray photons/cm2 exposed on Screen

• 1011-1012 optical photons/cm2 exposed on Film

• Therefore, with so few number of detected 

quanta, the quantum noise (poisson fluctuation) 

is dominant in radiographic images 



Assumptions

• Stationary statistics for a constant source 

and fixed source-detector geometry

• Ideal detector which responds to every 

phonon impinging on it



Motivation: 

We are concern to detect some objects ( here shown in blue) that has a 

different property, eg. “attenuation”, from the background (green).  

To do so:

we have to be able to describe the random processes that will 

cause the x-ray intensity to vary across the background.

I

Contrast = ∆I / I

SNR = ∆I / I = CI / I

∆I

Object we are trying to detectBackground



binomial distribution:

is the discrete probability distribution of the number of 

successes (eg. Photon detection) in a sequence of n

independent experiments (# of interacting photons).
Each photon detection yields success with probability p.

If experiment has only 2 possible outcomes for each trial (eg. Yes/No),

we call it a Bernouli random variable.

Success: Probability of one is p

Failure: Probability of the other is 1 - p

http://en.wikipedia.org/wiki/Discrete_probability_distribution
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Probability


Rolling dies

The outcome of rolling the die is a random variable of 

discrete values.  

Let’s call this random variable X.  We write then that 

the probability of X being value n (eg. 2) is px(n) = 1/6

1/6

1 2 3 4 5 6

Note:  Because the probability of all events is equal,

we refer to this event as having a uniform probability

distribution
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Zeroth Order Statistics

• Not concerned with relationship between events 

along a random process

• Just looks at one point in time or space

• Mean of X, mX, or Expected Value of X, E[X] 

– Measures first moment of pX(x)

• Variance of X, 2
X , or E[(X-m)2 ]

– Measure second moment of pX(x)
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Zeroth Order Statistics

• Recall E[X]

• Variance of X or E[(X-m)2 ] 
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2 3 4 5 6 7 8 9 10 11 12

6/36

1/36
2/36

3/36

4/36

5/36

p(j) for throwing 2 die is 1/36:

Let die 1 experiment result be x and called Random Variable X

Let die 2 experiment result be y and called Random Variable Y

With independence:   pXY(x,y) = pX(x) pY (y)

E [xy] = ∫ ∫ xy pXY(x,y) dx dy = ∫ x pX(x) dx ∫ y pY(y) dy = E[X] E[Y]



E [X+Y] = E[X] + E[Y]  Always

E[aX] = aE[X]  Always

2
x = E[X2] – E2[X]  Always

2(aX) = a2 2
x Always  

E[X + c] = E[X] + c 

Var(X + Y) = Var(X) + Var(Y) only if the X and Y

are statistically independent. 
_



For n trials,

P[X = i] is the probability of i successes in the n trials

X is said to be a binomial variable with parameters (n,p)
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Roll a die 10 times (n=10).

In this game, you win if you roll a 6.

Anything else - you lose

What is P[X = 2], the probability you win twice (i=2)?

= (10! / 8! 2!) (1/6)2 (5/6)8

= (90 / 2) (1/36) (5/6)8 = 0.2907
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Binomial PDF and normal approximation 

for n = 6 and p = 0.5.

http://en.wikipedia.org/wiki/Image:BinDistApprox_large.png
http://en.wikipedia.org/wiki/Image:BinDistApprox_large.png


Limits of binomial distributions

•As n approaches ∞ and p approaches 0, then the 

Binomial(n, p) distribution approaches the Poisson 

distribution with expected value λ=np . 

•As n approaches ∞ while p remains fixed, this distribution 

approaches the normal distribution with expected value 0 

and variance 1

•(this is just a specific case of the Central Limit Theorem). 

http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Central_limit_theorem


Recall: If p is small and n large so that np is moderate, 

then an approximate (very good) probability is:

P[X=i] = e - i / i!        Where np = 

the probability exactly i events happen

With Poisson random variables, their mean is equal to their

variance!

E[X] = x
2= 



Let the probability that a letter on a page is misprinted 

is 1/1600.  Let’s assume 800 characters per page.  Find 

the probability of 1 error on the page.

Using Binomial Random Variable Calculation:

i = 1, p = 1/1600 and n =800

P [ X = 1] = (800! / 799!) (1/1600) (1599/1600)799

Very difficult to calculate some of the above terms.

But using Poisson calculation:

P [ X = i] = e - i / i!        Here, so =np = ½

So P[X=1] = 1/2 e –0.5 = .30
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To find the probability density function that describes the number of 

photons striking on the Detector pixel

• (    )  

Source               Body         Detector

1) Probability of  X-ray emission is a Poisson process:

N0 is the average number of emitted X-ray photons (i.e  in the

Poisson process). 
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2) Transmission   -- Binomial Process

transmitted p = e - ∫ u(z) dz

interacting q = 1 - p

3) Cascade of a Poisson and Binary Process still has a  Poisson 

Probability Density Function

- Q(i) represents transmission of Emitted photons:

With Average Transmission:     = pN0

Variance:                         2 = pN0
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SNR Based on the number of photons (N):

then          describes the signal :
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N = AR exp[ - ∫ mdz ]

R

cmPhotons

R

2/
105.2

10




The average number of photons N striking a detector depends on:

1- Source Output (Exposure), Roentgen (R) (Considering Geometric 
efficiency Ω/4π (fractional solid angle subtended by the detector)

2- Photon Fluence/Roentgen                                              
for moderate evergy

3- Pixel Area (cm2)

4- Transmission probability p 



Let t = exp [-∫m dz]  and Add a recorder with quantum efficiency 

Example chest x-ray: 

50 mRad= 50 mRoentgen

 = 0.25

Res = 1 mm

t = 0.05

What is the SNR as a function of C?

ARtCNCSNR  

NCNCSNR 



Consider the detector

M   X light photons / capture  Y light photons 

Captured  Photons

In Screen (Poisson)

What are the zeroth order statistics on Y?

M

Y =  Xmm=1

Y depends on the number of x-ray photons M that hit the screen, a

Poisson process.  

Every photon that hits the screen creates a random number of light 

photons, also a Poisson process. 



What is the mean of Y?  ( This will give us the signal level in terms 

of light photons)

Mean

Expectation of a Sum is 

Sum of Expectations (Always). 

There will be M terms in sum.

Each Random Variable X has same mean.  

There will be M terms in the sum

E [Y] = E [M] E [X] Sum of random variables

E [M] =  N captured x-ray photons / element

E [X] = g1 mean # light photons/single x-ray capture

so the mean number of light photons is E[Y] =  N g1.  
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What is the variance of Y?  ( This will give us the std deviation)


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We consider the variance in Y as a sum of two variances:

1. The first will be an uncertainty in M, the number of incident X-

ray photons. 

2. The second will be due to the uncertainty in the number of light 

photons generated per each X-ray photon, Xm.



What is the variance of Y due to M?  


M

m mXY
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Considering M (x-ray photons) as the only random variable and X 

(Light/photons) as a constant, 

then the summation would simply be:    Y = MX. 

The variance of Y is: y
2 = X2 M

2

(Recall that multiplying a random variable by a constant increases its variance 

by the square of the constant. Note: The variance of M effects X)

But X is actually a Random variable, so we will write X as E[X] 

Therefore, Uncertainty due to M is: y1
2 = [E[X]]2 M

2



What is the variance of Y do to X (Light/photons)?  


M

m mXY
1

Here, we consider each X in the sum as a random variable but M is 

considered fixed:

Then the variance of the sum of M random variables would 

simply be M.x
2

Note: Considering that the variance of X has no effect on M (ie. each process that 

makes light photons by hitting a x-ray photon is independent of each other)

Therefore, Uncertainty due to X is: y2
2 = E[M] X

2



M
2 = E [M] =  N Recall M is a Poisson Process

X
2 = E [X] = g1                                Generating light photons is also Poisson

Y
2 = y1

2 + y2
2 = [E[X]]2 M

2 + E[M] X
2 = Ng1

2 +  Ng1

Uncertainty of Y due to M
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Uncertainty of Y due to X

Dividing numerator and denominator by g1



Actually, half of photons escape and energy efficiency rate of screen 

is only 5%.  This gives us a  g1 = 500

Since g1 >> 1, 

000,20
25.
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What can we expect for the limit of g1, the generation rate of light

photons?
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We still must generate pixel grains

Y

W = ∑  Zm  where W is the number of silver grains developed
m=1

Y  Z  W    grains / pixel
Light 

Photons / 

pixel
Z = developed Silver grains / light photons

Let E[Z] = g2 , the number of light photons to develop one grain of 

film. 

Then, z
2 = g2    (since this is a Poisson process, i.e. the mean is the 

variance).



E[W] = E[Y] E[Z] = Ng1 . g2

Recall: Y
2 =Ng1

2 +  Ng1

E [Z] = z
2 =g2 Number of light photons needed to develop a grain of film

W
2  =  Y

2 E2[Z]  +   E[Y] z
2

uncertainty in          uncertainty

light photons in gain factor z
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Recall g1 = 500 ( light photons per X-ray)

g2 = 1/200 light photon to develop a grain of film

That is one grain of film requires 200 light photons.

1/g1 << 1

200
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M  X  Z  W

Transmitted                g1 g2 developed

photons light grains/ grains

photons light

/x-ray photon

For N as the average number of transmitted, not captured, photons 

per unit area.
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 is the solid angle subtended

from a point on the detector

to the pupil

Subject

Fluorescent screen

Source

If a fluorescent screen is used instead of film, the eye will only capture 

a portion of the light rays generated by the screen.

How could the eye’s efficiency be increased?

-Old Method

Viewer



 is the solid angle subtended

from a point on the detector

to the pupil

Fluorescent screen

Let’s calculate the eye’s efficiency capturing light  

r = viewing distance (minimum 20 cm)

Te  retina efficiency ( approx. 0.1)

A = pupil area ≈ 0.5 cm2 (8 mm pupil diameter)

ee T
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A
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Recall

In fluoroscopy:

g1 =103 light photons / x-ray

g2 = 

 ≈ 10-5 (at best) Typically  ≈ 10-7

g1g2  = 10310-5 = 10-2 at best

Therefore loss in SNR is about 10

We have to up the dose by a factor of 100!  (or, more likely, to 

compromise resolution rather than dose)

At each stage, we want to keep the gain product >> 1 or quantum 

effects will harm SNR.
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g2

g3

phosphor 

output screen

phosphor

Photo 

cathode

X-rays

g1 = Conversion of x-ray photon to Light photons in Phosphor

g2 = Conversion of Light photons into electrons

g3 = Conversion of accelerated electron into light photons

Electrostatic

lenses

g4

eye efficiency
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g1 = 103 light photons /captured x-ray 

g2 = Electrons / light photons = 0.1

g1g2 = 100

g3 = emitted light photons / electron = 103

g4 =  eye efficiency = 10-5 optimum

g1g2g3g4 = 103 10-1 103 10-5 = 1
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g2 g3g1

TV 

cathode

g4

Lens efficiency 0
g1 = 103

g2 = 10 -1

g3 = 103 0

0 ≈ 0.04 (Lens efficiency. Much better than eye)

g4 = 0.1 electrons / light photon

g1g2g3g4 = 4 x 102

g1g2g3g4 >> 1 

and all the intermediate gain products >> 1
NCSNR 



But TV has an additive electrical noise component.  

Let’s say the noise power (variance) is Na
2.  
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N

Na =  = kN

-In X-ray, the number of photons is modeled as our source of signal.

- We can consider Na (which is actually a voltage), as its equivalent 

number of photons.

- Electrical noise then occupies some fraction of the signal’s dynamic 

range.  Let’s use k to represent the portion of the dynamic range that is 

occupied by additive noise.  
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k = 10-2 to 10-3 

N = 105 photons / pixel

k = 10-2 k2N = 10

k = 10-3 k2N = 10-1 Much Better!

If k2N << 1

If  k2N >> 1 SNR ≈ C/k poor, not making use of radiation
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Is + Ib

}∆I

0

Is

Scatter increases the background intensity.

Scatter increases the level of the lesion.

Let the ratio of scattered photons to desired photons be 
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N
2 = N + Ns where Ns is mean number of scattered photons
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SNR Effects of Scatter

The variance of the background depends on the variance of trans-

mitted and scattered photons. 

Both are Poisson and independent so we can sum the variances. 

Here C is the scatter free contrast.   



Filtering of Noisy Images

• Imaging system is combination of Linear filters 

with in turn effects on Noisy signals

• Noise can be Temporal or Spatial in an image

• This can also be classified as Stationary or 

nonstationary

• If the Random fluctuating input to a system with 

impulse response of p(t) is win(t), what can be the 

mean <wout> and variance σout of the output (which 

is noise variation):


